Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus.
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus. Single-sample sequencing and base modification detection of cultured isolate of a foodborne pathogen.
Project description:Bifidobacterium thermophilum RBL67 (RBL67), a human fecal isolate and promising probiotic candidate, showed antagonistic and protective effects against Salmonella and Listeria in vitro. However, the underlying mechanisms fostering these health-related effects remain unknown. Therefor the transcriptome response of RBL67 and Salmonella enterica subsp. enterica serovar Typhimurium N-15 (N-15) in co-culture compared to the response in their respective mono-cultures. RNA was extracted from culture samples taken after 4 (N-15) or 5 h (RBL67) and RNAseq was performed on an Illumina HiSeq 2000 sequencer. Three biological replciates were performed resulting in 12 data sets: 3 RBL67 mono culture, 3 N15 mono-culture, 3 RBL67 co-culture, 3 N15 co-culture. Our study provided first insights into probiotic-pathogen interaction on transcriptional level and suggests a mechanism for how probiotic organisms can protect the host from infections.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to lettuce medium (LM) and lettuce root exudates (LX) to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to tomato medium (TM) and tomato root exudates (TX) compared to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to DS soil suspension (DS) and suspension of autoclaved DS soil (DA) compared to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
Project description:The deposited microarray data were generated in a study that integrated the gene expression profiles and metabolic responses of Caco2 cells incubated with Bifidobacterium infantis subsp. infantis and Salmonella enterica subsp. enterica sv. Typhimurium. The aim of this study was to investigate the interaction of B. infantis, S. Typhimurium, and host cells (Caco2) in the course of infection to understand the molecular mechanics of probiotic-pathogen-host interactions.