Project description:The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had devastating impacts on our global society. Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with SARS-CoV-2 infection, variants with constellations of mutations in the spike gene threaten their efficacy. Therefore, antiviral interventions that are resistant to further virus evolution may be needed. Here, we show IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1529 (Omicron) variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally-delivered IFN-λ2 limited infection of historical or variant (B.1.351 and B.1.1.529) SARS-CoV-2 strains in both the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ was produced preferentially in epithelial cells and acted on radio-resistant cells to protect against of SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.
Project description:Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 microbiome studies by analyzing the upper respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We found that time in the intensive care unit and the type of oxygen support explained the most variation within the upper respiratory tract microbiome, dwarfing (non-significant) effects from viral load, disease severity, and immune status. Specifically, mechanical ventilation was linked to altered community structure, lower species- and higher strain-level diversity, and significant shifts in oral taxa previously associated with COVID-19.
Project description:Full understanding of the pathophysiology of COVID-19 is critical for adequate treatment and development of vaccine and therapeutics. Although Golden hamster has been emerged as animal model of COVID-19, it is unknown how SARS-CoV-2 enters and infects targeted epithelial cells at molecular and cellular levels. Here, by applying single cell RNA sequencing in the upper respiratory tract, lung, kidney and intestine of golden hamster, we show that the expression profiles of host factors for SARS-CoV-2 infection in specific cell types are similar to that of human. These data can be applied to a larger investigation (data not provided here) into the expression patterns of host cell entry factors of SARS-CoV-2 in golden hamster organs.
Project description:Unlike other respiratory viruses, SARS-CoV-2 disproportionately causes severe disease in older adults and only rarely in children. To investigate whether differences in the upper airway immune response could contribute to this disparity, we compared nasopharyngeal gene expression in 83 children (<19-years-old; 38 with SARS-CoV-2, 11 with other respiratory viruses, 34 with no virus) and 154 adults (>40-years-old; 45 with SARS-CoV-2, 28 with other respiratory viruses, 81 with no virus). Expression of interferon-stimulated genes (ISGs) was robustly activated in both children and adults with SARS-CoV-2 compared to the respective non-viral groups, with only relatively subtle distinctions. Children, however, demonstrated markedly greater upregulation of pathways related to B cell and T cell activation and proinflammatory cytokine signaling, including TNF, IFNγ, IL-2 and IL-4 production. Cell type deconvolution confirmed greater recruitment of B cells, and to a lesser degree macrophages, to the upper airway of children. Only children exhibited a decrease in proportions of ciliated cells, the primary target for SARS-CoV-2, upon infection with the virus. These findings demonstrate that children elicit a more robust innate and adaptive immune response to SARS-CoV-2 infection in the upper airway that likely contributes to their protection from severe disease in the lower airway.
Project description:The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time.
Project description:During the COVID-19 pandemic, three variants of concern (VOC) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) emerged globally with increasingly greater ability to evade the immune response and enhanced transmissibility. A critical question we have faced with each new VOC is how well the vaccine based on the ancestral strain will protect. Given vaccine hesitancy, it is also important to address how prior live infections may protect against new variants. To address this later question, K18-hACE2 mice were infected with a low, partially lethal dose of WA1/2020 (WA1), the prototype strain on which the mRNA vaccines are based. On 24 days post-infection (dpi), surviving mice were challenged with WA1, Alpha or Delta. Nasal turbinates and lungs showed active replication on 1- and 3-days post-challenge (dpc) in Alpha- and Delta-, but not WA1- challenge groups. The rate of recovery of Alpha- and Delta-challenged mice lagged behind WA1 with mice showing weight loss despite a greatly dampened proinflammatory response in the lung. In contrast, nasal turbinates had a heightened proinflammatory response for Alpha- and Delta- but not WA1-challenged groups. Inflammatory responses were limited to the upper respiratory tract. Despite this, we did not observe significant difference among the groups in fold change in the neutralizing titer. In summary, infection with a low dose of SARS-CoV-2 confers protection from challenge, but mice in the heterologous challenge group differed in having greater weight loss, viral replication, and a heightened proinflammatory response in the upper respiratory tract.
Project description:Seasonal influenza outbreaks represent a large burden for the healthcare system as well as the economy. While the role of the microbiome in the context of various diseases has been elucidated, the effects on the respiratory and gastrointestinal microbiome during influenza illness is largely unknown. Therefore, this study aimed to characterize the temporal development of the respiratory and gastrointestinal microbiome of swine using a multi-omics approach prior and during influenza infection. Swine is a suitable animal model for influenza research, as it is closely related to humans and a natural host for influenza viruses. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae families in the upper respiratory tract. To our surprise, temporal development of the respiratory microbiome was not affected. Furthermore, we observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, we found increased abundances of Prevotellaceae, while Clostridiaceae and Lachnospiraceae decreased. Furthermore, metaproteomics showed that the functional composition of the microbiome, known to be robust and stable under healthy conditions, was heavily affected by the influenza infection. Metabolome analysis proved increased amounts of short-chain fatty acids in the gastrointestinal tract, which might be involved in faster recovery. Furthermore, metaproteome data suggest a possible immune response towards flagellated Clostridia induced during the infection. Therefore, it can be assumed that the respiratory infection with IAV caused a systemic effect in the porcine host and microbiome.