Project description:Our study revealed a synergistic effect between biological nitrogen fixation and current generation by G. sulfurreducens, providing a green nitrogen fixation alternative through shifting the nitrogen fixation field from energy consumption to energy production and having implications for N-deficient wastewater treatment.
2021-10-09 | GSE185414 | GEO
Project description:Biological Nitrogen Fixation in Grass
Project description:To investigate the effect that biological nitrogen fixation will have on plant responses to nitrogen dose at elevated CO2, alfalfa (Medicago sativa) lines were grown at three nitrogen doses and ambient or elevated CO2. Four lines were used in the study, two lines that can form nodules capable of fixing nitrogen (effective lines) and two lines that can not form nodules capable of nitrogen fixation (ineffective lines). The ineffective lines are the result of a complementary mutation in the same gene.
Project description:Biological nitrogen fixation, the microbial reduction of atmospheric nitrogen to bioavailable ammonia, represents both a major limitation on biological productivity and a highly desirable engineering target for synthetic biology. However, the engineering of nitrogen fixation requires an integrated understanding of how the gene regulatory dynamics of host diazotrophs respond across sequence-function space of its central catalytic metalloenzyme, nitrogenase. Here, we interrogate this relationship by analyzing the transcriptome of Azotobacter vinelandii engineered with a phylogenetically inferred ancestral nitrogenase protein variant. The engineered strain exhibits reduced cellular nitrogenase activity but recovers wild-type growth rates following an extended lag period. We find that expression of genes within the immediate nitrogen fixation network is resilient to the introduced nitrogenase sequence-level perturbations. Rather the sustained physiological compatibility with the ancestral nitrogenase variant is accompanied by reduced expression of genes that support trace metal and electron resource allocation to nitrogenase. Our results spotlight gene expression changes in cellular processes adjacent to nitrogen fixation as productive engineering considerations to improve compatibility between remodeled nitrogenase proteins and engineered host diazotrophs. IMPORTANCE Azotobacter vinelandii is a key model bacterium for the study of biological nitrogen fixation, an important metabolic process catalyzed by nitrogenase enzymes. Here, we demonstrate that compatibilities between engineered A. vinelandii strains and nitrogenase variants can be modulated at the regulatory level. The engineered strain studied here responds by adjusting the expression of proteins involved in cellular processes adjacent to nitrogen fixation, rather than that of nitrogenase proteins themselves. These insights can inform future strategies to transfer nitrogenase variants to non-native hosts.
2023-06-07 | GSE234075 | GEO
Project description:Nitrogen fixation bacteria in desert biological soil crusts
Project description:The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL disrupted) and wild-type strain, and to what was reported for the wild-type strain under exponential growth related to key processes involved in driving the process of nitrogen fixation in A. vinelandii. These results further illuminate a number of additional genes associated with siderophore synthesis, molybdate transfer and electron transfer that are likely associated with biological nitrogen fixation.
Project description:Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high N inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high N transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high N.