Project description:MepR is a substrate-responsive repressor of mepR and mepA, which encode itself and a MATE family multidrug efflux pump. Microarray analyses of Staphylococcus aureus SH1000 and its mepR-disrupted derivative revealed changes in expression of many genes in addition to mepR and mepA, notably several involved in virulence Keywords: Staphylococcus aureus, MATE efflux pump, MepR
Project description:MepR is a substrate-responsive repressor of mepR and mepA, which encode itself and a MATE family multidrug efflux pump. Microarray analyses of Staphylococcus aureus SH1000 and its mepR-disrupted derivative revealed changes in expression of many genes in addition to mepR and mepA, notably several involved in virulence Keywords: Staphylococcus aureus, MATE efflux pump, MepR Staphylococcus aureus strains SH1000 wildtype and mepR were grown in duplicate to exponential and post-exponential phase (corresponding to an A550 nm of 0/4 and 2.0 respectively). RNA was harvested, converted to cDNA, labelled with Biotin and used to probe custom-designed Affymetrix antisense S.aureus GeneChips. Eight samples in total were prepared and analyzed.
Project description:The transcription level of a rex-deficient S. aureus mutant in comparison to its parental strain S. aureus SH1000 was analyzed using DNA microarrays.
Project description:Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). In TD-SCVs, mutations of thymidylate synthase (thyA, TS), essential for DNA synthesis, occur. However, it has never been shown, that TMP-SMX is responsible for the induction and selection of TD-SCVs. Short-term exposure of TMP-SMX induced the TD-SCV phenotype morphologically as shown in transmission electron-microscopy and on the transcriptional level by qRT-PCR in wild-type S. aureus, while selection of TD-SCVs with thyA mutations occurred only rarely after long-term exposure. In reversion experiments with clinical TD-SCVs, all revertants revealed compensating mutations at the initially identified mutation site. Whole DNA microarray analysis of a thyA deletion mutant (∆thyA), which exhibited the typical TD-SCV phenotype, identified tremendous alterations compared to the wild-type. Important virulence regulators such as agr, arlRS, sarA and major virulence determinants including hla, hlb, sspA, sspB and geh were down-regulated, while genes associated with the colonization capacity like fnbA, fnbB, spa, clfB, sdrC and sdrD were up-regulated. The expression of genes involved in pyrimidine and purine metabolism as well as in nucleotide interconversion changed significantly. The ∆thyA-mutant was attenuated in virulence in both, a Caenorhabditis elegans killing model and an acute murine pneumonia model. Furthermore, competition experiments in vitro and in vivo (using a chronic pneumonia mouse model) revealed a survival and growth advantage of the ∆thyA-mutant under low thymidine conditions and TMP-SMX exposure. In conclusion, our results clearly show for the first time that TMP-SMX induces the TD-SCV phenotype after short-term exposure in S. aureus and that long-term exposure selects thyA mutations providing an advantage for TD-SCVs under specified conditions. Thus, our results help to understand the dynamic processes of induction and selection of S. aureus TD-SCVs during TMP-SMX exposure.
Project description:We have demonstrated previously that high-level resistance to nisin can occur in Staphylococcus aureus as a consequence of a single non-synonymous mutation in nsaS, which encodes a putative sensor kinase. To explore the mechanism by which this mutation confers high-level resistance we compared global transcriptomes of SH1000 and SH1000 (NsaS A208E) using RNAseq. This process identified several genes to be upregulated in SH1000 (NsaS A208E), including members of the NsaRS regulon which encode VraDE and BraDE, two putative ABC-transporters and are known to provide intrinsic nisin resistance. Gene deletion and complementation experiments revealed that both BraDE and VraDE are essential to high-level nisin resistance, with BraDE required for signal transduction through NsaRS, and VraDE directly responsible for nisin detoxification.
Project description:To study the roles of NWMN_0641, we used microarray to compare the transcriptome of the NWMN_0641 deletion strain with that of the wild-type Staphylococcus aureus Newman strain. Transcriptome of the NWMN_0641 deletion mutant strain and the wild-type Newman strain
Project description:ArlRS is a two-component regulatory system in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic arlRS mutant.
Project description:MgrA is a global regulator of gene expression in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic mgrA mutant.