Project description:Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant morbidity and mortality and frequent recurrence. Pre-NGS efforts to transcriptionally classify HNSCC into groups of varying prognosis have identified four accepted molecular subtypes of disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigated the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identified samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to atypical subtype were more resistant to bromodomain inhibitors (BETi). PRO-Seq experiments that both TCGA tumors and AT cell lines showed higher eRNA transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, HiChIP experiments suggested higher enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways were upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with high enhancer activity, resistance to BET inhibition, and signaling pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Project description:Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant morbidity and mortality and frequent recurrence. Pre-NGS efforts to transcriptionally classify HNSCC into groups of varying prognosis have identified four accepted molecular subtypes of disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigated the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identified samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to atypical subtype were more resistant to bromodomain inhibitors (BETi). PRO-Seq experiments that both TCGA tumors and AT cell lines showed higher eRNA transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, HiChIP experiments suggested higher enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways were upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with high enhancer activity, resistance to BET inhibition, and signaling pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Project description:Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant morbidity and mortality and frequent recurrence. Pre-NGS efforts to transcriptionally classify HNSCC into groups of varying prognosis have identified four accepted molecular subtypes of disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigated the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identified samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to atypical subtype were more resistant to bromodomain inhibitors (BETi). PRO-Seq experiments that both TCGA tumors and AT cell lines showed higher eRNA transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, HiChIP experiments suggested higher enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways were upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with high enhancer activity, resistance to BET inhibition, and signaling pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Project description:Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant morbidity and mortality and frequent recurrence. Pre-NGS efforts to transcriptionally classify HNSCC into groups of varying prognosis have identified four accepted molecular subtypes of disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigated the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identified samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to atypical subtype were more resistant to bromodomain inhibitors (BETi). PRO-Seq experiments that both TCGA tumors and AT cell lines showed higher eRNA transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, HiChIP experiments suggested higher enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways were upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with high enhancer activity, resistance to BET inhibition, and signaling pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Project description:In the absence of recurrent gene mutations, evidence accumulates that epigenetic deregulation plays a prominent role in neuroblastoma biology. Here we provide 3D chromatin organization profiles using HiChIP in 2 neuroblastoma cell-lines.
Project description:Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease whose underlying etiology has not been explained by traditional prognostic factors such as tumor site, stage, or histology. Although previous studies have shown that molecular subtypes of HNSCC exist, the benefit of such a classification scheme has not been fully realized. We show that molecular subtypes of HNSCC exist; that these subtypes have distinct patterns of chromosomal gain and loss, some of which affect canonical oncogenes and tumor suppressors; and that the subtypes are biologically and clinically relevant. These subtypes provide new insight into HNSCC etiology, as well as a valuable method for classifying HNSCC tumors. A total of 163 samples were considered. Quality control procedures were applied to microarray probe-level intensity files. A total of 138 tumor arrays remained after removing low-quality arrays, duplicate arrays, and arrays from non-HNSCC samples. The normexp background correction and loess normalization procedures were applied to the probe-level data. After log transformation, probes were matched to a common gene database to produce expression values for 15595 genes.