Project description:Known as “The Oriental Botanic Garden” and the natural gene bank of biological species, Shennongjia is one of the most biologically diverse areas in China and a member of UNESCO's World Network of Biosphere Reserves. The macro-organism resources of shennongjia have been deeply explored. However, the microbial community structure was scarcely detected. In this study, we aim to detedect the microbial community along six sites of Shennonajia Mountain and explore the major controlling factor in shaping microbial community with a microarray-based metagenomics tool named GeoChip 4.2.
Project description:Botanic drug CA regulated the miRNAs expression in tumor cells. We used microarrays to detail the differentiation miRNAs expression in Huh7 cells treated with CA or not.
Project description:The study involves whole exome sequencing of 20 primary tumors obtained from lung squamous carcinoma patients of Indian origin. With this, we aim to describe the mutational profile of this specific subset of lung cancer patients. This knowledge will further allow us to gain an insight into potentially actionable genomic alterations prevalent in Indian lung squamous carcinoma.
Project description:Botanic drug CA regulated the genes expression in tumor cells. We used microarrays to detail the differentiation genes expression treated with CA or not.
Project description:Botanic drug CA regulated the genes expression in tumor cells. We used microarrays to detail the differentiation genes expression treated with CA or not.
Project description:This study involves characterization of four head and neck cancer cell lines -- NT8e, OT9, AW13516 and AW8507, established from Indian head and neck cancer patients, using SNP arrays, whole exome and whole transcriptome sequencing.
Project description:Cancer is predominantly a somatic disease. A mutant allele found in cancer cell genome is considered somatic when it is absent in paired normal genome and dbSNP, the most comprehensive public SNP database. However, dbSNP inadequately represents several non-Caucasian populations including that from the Indian subcontinent, posing a limitation in cancer genomic analyses of data from these populations. We present TMC-SNPdb, as the first open source freely accessible (through ANNOVAR), flexible and upgradable SNP database from whole exome data of 62 normal samples derived from cancer patients of Indian origin, representing 114,309 unique germline variants. TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or an easy-to-use graphical user interface (GUI) with the ability to deplete additional Indian population specific SNPs over and above that possible with dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb reduced 42%, 33% and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of TMC-SNPdb in several Mendelian germline diseases.