Project description:Tripidium arundinaceum isolate:BC5 progeny of a cross between Saccharum spp. and Erianthus arundinaceus | cultivar:1679-33 Genome sequencing
Project description:Sugarcane is of important economic value for producing sugar and bioethanol. Tripidium arundinaceum (old name: Erianthus arundinaceum) is an intergeneric wild species of sugarcane that has desirable resistance traits for improving sugarcane varieties. However, the scarcity of chromosome markers has hindered the cytogenetic study of T. arundinaceum. Here we applied maize chromosome painting probes (MCPs) to identify chromosomes in sorghum and T. arundinaceum using a repeated fluorescence in situ hybridization (FISH) system. Sequential FISH revealed that these MCPs can be used as reliable chromosome markers for T. arundinaceum, even though T. arundinaceum has diverged from maize over 18 MYs (million years). Using these MCPs, we identified T. arundinaceum chromosomes based on their sequence similarity compared to sorghum and labeled them 1 through 10. Then, the karyotype of T. arundinaceum was established by multiple oligo-FISH. Furthermore, FISH results revealed that 5S rDNA and 35S rDNA are localized on chromosomes 5 and 6, respectively, in T. arundinaceum. Altogether, these results represent an essential step for further cytogenetic research of T. arundinaceum in sugarcane breeding.
Project description:Sugarcane (Saccharum hybrid, SP80-3280) was grown in the field in Araras (Brazil) for 9 months. Leaves +1 (F1), internodes 1&2 (I1), and internodes 5 (I5) were harvested every 2 h for 26 h, starting 2h before dawn.
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes. DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing.The drought stress treatment was started by withholding water at the tillering stage. The days were counted after the AWC in the soil reached 20% to allow drought measurements at precisely determined intervals, and the soil water content reached 15%, 10% and 7.5% after 1d, 3d and 4d drought treatment, respectively.Three top leaves for each sample were harvested for each genotype under 1d and 3d drought stress and control conditions. All samples were immediately frozen in liquid nitrogen and stored at -80C and then for transcriptome sequencing.
Project description:affy_genomic_poplar - affy_genomic_poplar - The project aims to identify genes of interest for water deficit acclimation in poplar. We look for genes and gene expression networks related to drought stress in two hybrid cultivars, differing in their drought tolerance in field. Affymetrix poplar genome array was designed on several Populus species. In order to deal with comparative approaches, we checked the convenience of the array by hybridizing genomic DNA of the two hybrid cultivars (Populus deltoides × Populus nigra, namely ‘cv Carpaccio’ and ‘cv Soligo’). This point is important as transcript sequence might have diverged in the two genomes (Fossati et al, 2005), which could lead to absence of hybridization without physiological meaning. -Two poplar cultivars, Soligo (S) and Carpacio (C) were grown in controlled conditions. Mature leaves were collected and genomic DNA was extracted from leaves in CTAB buffer. gDNA was fragmented with DNAse1. DNA fragments were labelled with Biotin N6-ddATP and hybridized on Affymetrix poplar genome array. Two technical replicates per genotype were performed. Keywords: genomic comparison,gain of fuction epimutation