Project description:Purpose:to identify the response of Frankia sp.strain CcI6 to salt and osmotic stress. Frankia sp.strain CcI6 was exposed to salt and osmotic stress for seven days. RNAseq analysis was carried out to ge an insight into the response of the bacterium under salt and osmotic stress conditons
Project description:In this study, we characterized the homeostasis of the marine cyanobacteria Synechococcus sp. PCC7002 (BMB04) growing in chemically characterized synthetic seawater with three different levels of iron limitation representative of the modern ocean. Using transcriptomic approach, we identified the sequence of physiological responses to increasing Fe limitation. Our results showed an increase in the number of dysregulated genes and in the complexity of the response to increasing Fe limitation. Genes involved in photosynthesis were strongly down-regulated under MiFeL, while membrane transporters were up-regulated. Genes involved in regulation of energy metabolism responded under strong Fe limitation, while fine metabolic regulation of co-factors expression and activation of specific cellular mechanisms to minimize oxidative stress were only observed under severe Fe limitation. Additionally, our results demonstrate the limitations in the construct of the bioreporter BMB04 that hamper its application in areas of the ocean strongly Fe limited.
Project description:This SuperSeries is composed of the following subset Series: GSE22171: Pacific salmon gill samples: fate tracking in river, sampled in ocean GSE22177: Pacific salmon gill samples: fate tracking in river GSE22347: Pacific salmon gill samples: fate tracking at spawning grounds Refer to individual Series