Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein.
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22
Project description:The features of Mycoplasma in human organ such lung and urinary tract are enigmatic. Here, the role of M. hominis in regard to biofilm formation of uropathogenic Escherichia coli (UPEC) strain CFT073 was investigated. Although M. hominis were inferred to not impact on UPEC bacterial fitness including growth and productions of signaling molecules as autoinducer-2 (AI-2) and indole, we found that the presence of M. hominis dramatically decreased biofilm formation of UPEC CFT073 as well as slightly repressed attachment and cytotoxicity of that. Importantly, this activity was observed on UPEC strain specifically, not enterohemorrhagic E. coli (EHEC) strain that exists on intestine. Whole-transcriptome profiling and quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed PhoPQ system and anti-termination protein (encoded by ybcQ) participates on the reduction of biofilm formation by M. hominis (corroborated by qRT-PCR). Furthermore, collaborating with previous report that toxin-antitoxin (TA) system involved in biofilm formation, M. hominis increased on the transcriptions of toxin genes including hha (toxin gene in Hha-TomB TA system) and pasT (toxin part in PasT-PasI TA system). Hence, we propose that one possible role of M. hominis is to influence bacterial biofilm formation in urinary tract. Only fourteen genes were induced (2.5-fold) by the presence of M. hominis in Uropathogenic Escherichia coli (UPEC) biofilm cells. Among upregulated genes, ybcQ (encodes anti-termination protein Q homolog) and phoP/phoQ (encode DNA-binding response regulators in two-component regulatory system), were induced by the presence of M. hominis.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆arcA mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the ArcA protein. The results are further described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ?fnr mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the FNR protein. WT strains were grown under aerobic and anaerobic growth conditions.
Project description:Avian pathogenic Escherichia coli strains frequently cause extra-intestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E.coli strains and may also act as pathogens for humans. In this work, three type VI secretion systems were deleted to analyze which pathogenicity characteristics would change in the mutants, compared to wild type strain (SEPT 362).
Project description:Transcriptional analysis of UTI89 - uropathogenic E.coli (UPEC) strain grown in urine/Luria bertani medium culture in vitro as well as during three distinct phases of UPEC bladder infection: intracellular growth, filament formation and filament reversal. UTI89 was used to infect a bladder epithelial cell line cultured within a dynamic flow chamber system and harvested at particular stages of its pathogenecity cascade. Total RNA was processed and cy3 labeled for microarray analysis using Agilent custom Escherichia coli UTI89 arrays designed using E-Array.