Project description:Oral administration of an extract of compost fermented with thermophiles to pigs reduces the incidence of stillbirth and promotes piglet growth. However, the mechanism by which compost extract modulates the physiological conditions of the animals remains largely unknown. Here, we investigate the effects of compost extract on the gene expression in the intestine of the rat as a mammalian model. Gene expression analyses of the intestine indicated that several immune-related genes were upregulated following compost exposure. Thus, thermophile-fermented compost can contain microbes and/or substances that activate the gut mucosal immune response in the rat.
2012-11-02 | GSE37732 | GEO
Project description:metagenomics of compost samples
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses.
Project description:Composts are the products obtained after the aerobic degradation of different types of organic matter wastes and can be used as substrates or substrate/soil amendments. There are a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost as growing medium compared to standard substrates. The purpose of this study was to unravel the gene expression alteration produced by the compost to gain knowledge about the mechanisms involved in the compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis compared to the standard substrate perlite. Microarray analyses revealed that 178 genes were differently expressed with a fold change cut off of 1 from which 155 were upregulated and 23 were down regulated in compost-grown compared to perlite-grown plants. Functional enrichment study of up regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched terms as well as immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA dependent/independent abiotic stress responses. Global gene expression of plants grown in compost (3 biological replicates) versus plants grown in perlite (2 biological replicates) was studied.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:Oral administration of an extract of compost fermented with thermophiles to pigs reduces the incidence of stillbirth and promotes piglet growth. However, the mechanism by which compost extract modulates the physiological conditions of the animals remains largely unknown. Here, we investigate the effects of compost extract on the gene expression in the intestine of the rat as a mammalian model. Gene expression analyses of the intestine indicated that several immune-related genes were upregulated following compost exposure. Thus, thermophile-fermented compost can contain microbes and/or substances that activate the gut mucosal immune response in the rat. In Male Wistar rats aged 3 weeks, tap water was supplemented with 1.0% (v/v) compost extract for the experimental rats, whereas water only was given to the control rats. The rats received water ad libitum for 12 weeks. Fresh gut samples were collected from individual rats at the end of the feeding test and stored at -80°C. The intestine were separated from the gut and used as samples for the isolation of total RNA. otal RNA was then subjected to microarray experiments using the Whole Rat Genome (4x44k) Oligo Microarray (Agilent Technologies, Inc.)
Project description:To investigate the effect of different levels of compost treatment on root gene expression of Atriplex lentiformis, we set up a greenhouse experiment with three treatments of 10% (TC10), 15 (TC15), and 20% (TC20) compost amended, metalliferrous mine tailings. Plants were harvested at ~11 weeks and root samples were flash frozen in liquid nitrogen for RNA-seq analysis. We then performed gene expression profiling analysis using data obtained from RNA-seq of 9 root samples from 3 different treatments.
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
2018-05-22 | GSE99928 | GEO
Project description:16S rRNA metagenomics analysis of EFB-POME compost
Project description:In this project we evaluated the physiology of different agaricus bisporus strains during growth in compost, in particular with respect to plant biomass d egradation and carbon catabolism.