Project description:The study of orchid mycorrhizal interactions is particularly complex because of the peculiar life cycle of these plants and their diverse trophic strategies. Here, large-scale transcriptomics has been applied to investigate gene expression in the mycorrhizal roots of the terrestrial mixotrophic orchid Limodorum abortivum under natural conditions. Our results provide new insights into the mechanisms underlying plant-fungus interactions in orchids and in particular on the plant responses to the mycorrhizal symbiont(s) in adult roots. Comparison with gene expression in mycorrhizal roots of another orchid species, Oeceoclades maculata, suggests that amino acids may represent the main nitrogen source in both protocorms and adult orchids, at least for mixotrophic species. The upregulation, in mycorrhizal L. abortivum roots, of some symbiotic molecular marker genes identified in mycorrhizal roots from other orchids as well as in arbuscular mycorrhiza, suggests a common plant core of genes in endomycorrhizal symbioses. Further efforts will be required to understand whether the specificities of orchid mycorrhiza depend on fine-tuned regulation of these common components, or whether specific additional genes are involved.
Project description:The recent release of a large number of genomes from ectomycorrhizal, orchid mycorrhizal and root endophytic fungi have provided deep insight into fungal lifestyle-associated genomic adaptation. Comparative analyses of symbiotic fungal taxa showed that similar outcomes of interactions in distant related root symbioses are examples of convergent evolution. The order Sebacinales represents a sister group to the Agaricomycetes (Basidiomycota) that is comprised of ectomycorrhizal, ericoid-, orchid- mycorrhizal, root endophytic fungi and saprotrophs (Oberwinkler et al., 2013). Sebacinoid taxa are widely distributed from arctic to temperate to tropical ecosystems and are among the most common and species-rich groups of ECM, OM and endophytic fungi (Tedersoo et al., 2012, Tedersoo et al., 2010, Oberwinkler et al., 2013). The root endophyte Piriformospora indica and the orchid mycorrhizal fungus S. vermifera (MAFF 305830) are non-obligate root symbionts which were shown to be able to interact with many different experimental hosts, including the non-mycorrhizal plant Arabidopsis thaliana. These two fungi display similar colonization strategies in barley and in Arabidopsis and the ability to establish beneficial interactions with different hosts (Deshmukh et al., 2006). Colonization of the roots by P. indica and S. vermifera results in enhanced seed germination and biomass production as well as increased resistance against biotic and abiotic stresses in its experimental hosts, including various members of the Brassicaceae family, barley, Nicotiana attenuata and switchgrass (Ghimire, 2011, Ghimire et al., 2009, Ghimire et al., 2011, Waller et al., 2008, Barazani et al., 2007, Deshmukh et al., 2006). Microarray experiments were performed to identify and characterize conserved sebacinoid genes as key determinants in the Sebacinales symbioses.
Project description:Mycorrhizal fungi colonize orchid seed and induce the germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchids. However, the molecular changes taking place during the orchid seed symbiotic germination still remains largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed comparative transcriptomic and proteomic analysis on Chinese traditional medicinal orchid plants, Dendrobium officinale to explore protein expression change at the different developmental stages between asymbiotic and symbiotic germination and identify the key proteins regulated symbiotic germination of orchid seeds. iTRAQ analysis from 8 samples identified 2256 plant proteins, of which, 308 proteins were differentially expressed across three developmental stages within asymbiotic or symbiotic accession and 229 proteins are differentially expressed in the symbiotic germination compared to asymbiotic germination. 32 proteins are co-upregulated in both proteomic and transcriptomic level for symbiotic germination compared to asymbiotic germination. Our results revealed that symbiotic germination of D. officinale seeds probably shares the common signal pathway with asymbiotic germination during the early germination stage.
Project description:Orchids form an endomycorrhizal association with fungal symbionts mainly belonging to Basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchange between the symbionts imply a modulation of gene expression. In this study, we used proteomic and transcriptomic approaches to identify changes in the steady-state levels of proteins and transcripts in roots of the green terrestrial orchid Oeceoclades maculata. When mycorrhizal and non-mycorrhizal roots from the same individuals of O. maculata were compared, 94 proteins showed differential accumulation using the label-free protein quantitation approach, 86 using isobaric tagging (iTRAQ) and 60 using 2D-differential electrophoresis. After de novo assembly of transcriptomic data, 11,179 plant transcripts were found to be differentially expressed and 2175 were successfully annotated. The annotated plant transcripts allowed the identification of up- and down-regulated metabolic pathways in mycorrhizal roots, as compared to non-mycorrhizal roots. Overall, proteomics and transcriptomics revealed in mycorrhizal roots increased levels of transcription factors and nutrient transporters, as well as ethylene-related proteins. The expression pattern of proteins and transcripts involved in plant defense responses suggest that plant defense is reduced in mycorrhizal roots. These results expand our current knowledge towards a better understanding of the orchid mycorrhizal symbiosis in adult plants under natural conditions.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression in Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on whole mycorrhizal roots. We used GeneChips to detail the global programme of gene expression in response to colonization by arbuscular mycorrhizal fungi and in response to a treatment with phosphate and identified genes differentially expressed during this process.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression in Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on whole mycorrhizal roots. We used GeneChips to detail the global programme of gene expression in response to colonization by arbuscular mycorrhizal fungi and in response to a treatment with phosphate and identified genes differentially expressed during this process. Medicago truncatula roots were harvested at 28 days post inoculation with the two different arbuscular mycorrhizal fungi Glomus intraradices (Gi-Myc) and Glomus mosseae (Gm-Myc) under low phosphate conditions (20 µM phosphate) or after a 28 days treatment with 2 mM phosphate in the absence of arbuscular mycorrhizal fungi (2mM-P). As a control, uninfected roots grown under low phosphate conditions (20 µM phosphate) were used (20miM-P). Three biological replicates consisting of pools of five roots were used for RNA extraction and hybridization on Affymetrix GeneChips.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on mycorrhizal root fragments enriched for early fungal infection stages. We used Medicago GeneChips to detail the global programme of gene expression in response to early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these early stages.