Project description:Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus and most commonly used virus vector for baculovirus expression vector systems. The effect of AcMNPV infection on host cells is incompletely understood. A microarray based on Spodoptera frugiperda ESTs was used to investigate the impact of AcMNPV on host gene expression in cultured S. frugiperda, Sf21 cells. Most host genes were down-regulated over the time course of infection, although a small number were up-regulated. The most highly up-regulated genes encoded heat shock protein 70s and several poorly characterized proteins. Regulated genes with the highest score identified by functional annotation clustering included primarily products required for protein expression and trafficking in the ER and golgi. All were significantly down-regulated by approximately 12h post-infection. Microarray data were validated by qRT-PCR. This study provides the first comprehensive host transcriptome overview of Sf21 cells during AcMNPV infection.
Project description:Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus and most commonly used virus vector for baculovirus expression vector systems. The effect of AcMNPV infection on host cells is incompletely understood. A microarray based on Spodoptera frugiperda ESTs was used to investigate the impact of AcMNPV on host gene expression in cultured S. frugiperda, Sf21 cells. Most host genes were down-regulated over the time course of infection, although a small number were up-regulated. The most highly up-regulated genes encoded heat shock protein 70s and several poorly characterized proteins. Regulated genes with the highest score identified by functional annotation clustering included primarily products required for protein expression and trafficking in the ER and golgi. All were significantly down-regulated by approximately 12h post-infection. Microarray data were validated by qRT-PCR. This study provides the first comprehensive host transcriptome overview of Sf21 cells during AcMNPV infection. Host gene expression of the Sf21 cells was measured in AcMNPV mock-infected Sf21cells as well as AcMNPV-infected Sf21 cells at 6, 12, and 24 hours post infection (hpi). Four independent experiments were performed at each time (6, 12, and 24 hpi) using different donors for each experiment. Only two 24 hour sample data sets were used in the final analysis as two did not meet QC criteria.
Project description:Comparison between transcriptome of Spodoptera frugiperda (Sf9) cells and Autographa californica Multiple Nucleopolyhedrovirus-infected Sf9 cells Raw sequence reads
Project description:Spodoptera frugiperda is the world’s major agricultural pests, and has the distinctive features of high fecundity, strong migratory capacity and high resistance to most insecticides. At present, the control of S. frugiperda in China relies mainly on the spraying of chemical insecticides. MicroRNAs (miRNAs) are a class of small, single-stranded, non-coding RNAs, and play crucial regulatory roles in various physiological processes, including the insecticide resistance in insects. However, little is known about the regulatory roles of miRNAs on the resistance of S. frugiperda to insecticides. In the present research, the miRNAs that were differentially expressed after cyantraniliprole, spinetoram, emamectin benzoate and tetraniliprole treatment were analyzed by RNA-Seq. A total of 504 miRNAs were systematically identified from S. frugiperda, and 24, 22, 31 and 30 miRNAs were differentially expressed after treatments of cyantraniliprole, spinetoram, emamectin benzoate and tetraniliprole. GO and KEGG enrichment analyses were used to predict the function of differentially expressed miRNAs’ target genes. Importantly, ten miRNAs were significantly differentially expressed among the treatments of three insecticides. MiR-278-5p, miR-13b-3p, miR-10485-5p and miR-10483-5p were significantly down-regulated among the treatments of three insecticides by RT-qPCR. Furthermore, overexpression of miR-278-5p, miR-13b-3p, miR-10485-5p and miR-10483-5p significantly increased the mortality of S. frugiperda to cyantraniliprole and emamectin benzoate. The mortality was significantly increased with spinetoram treatment after overexpression of miR-13b-3p, miR-10485-5p and miR-10483-5p. These results suggest that miRNAs, which are differentially expressed in response to insecticides, may play a key regulatory role in the insecticide resistance in S. frugiperda.
Project description:Purpose: We analyzed the 3rd-instar Spodoptera frugiperda response after SfAV-1a infection. Specifically, we targeted three gene types in the infected host namely, mitochondrial, cytoskeleton and innate immunity genes.
Project description:MicroRNAs (miRNAs) are endogenous small noncoding RNAs (18–25 nt) that are involved in many physiological processes including development, cancer, immunity, apoptosis and host-microbe interactions through posttranscriptional regulation of gene expression. In this study, we measured the profile of small RNAs in Zea mays after one day and three days of Spodoptera frugiperda feeding. We identified 500 miRNAs, including 449 known and 51 novel miRNAs. In addition, we identified the miRNAs differentially expressed in Z. mays after one day and three days of S. frugiperda feeding, and the possible target genes were identified. This study identified critical miRNAs involved in the Z. mays during S. frugiperda feeding, thus providing a useful resource for exploring the regulatory role of miRNAs during plant-insect interactions.
Project description:MicroRNAs (miRNAs) are endogenous small noncoding RNAs (18–25 nt) that are involved in many physiological processes including development, cancer, immunity, apoptosis and host-microbe interactions through posttranscriptional regulation of gene expression. In this study, we measured the profile of small RNAs over the developmental transitions of Spodoptera frugiperda from egg to adult. We identified 741 miRNAs, including 493 known and 248 novel miRNAs. In addition, we identified the miRNAs differentially expressed over the developmental transitions via weighted gene co-expression network analysis (WGCNA). This study identified critical miRNAs involved in the transitions of this important pest insect S. frugiperda from egg to adult, thus providing a useful resource for exploring the regulatory role of miRNAs during insect post-embryonic development.
Project description:This SuperSeries is composed of the following subset Series: GSE16775: Effect of HdIV or MdBV injection on the Spodoptera frugiperda hemocyte transcriptome GSE16776: Effect of HdIV or MdBV injection on the Spodoptera frugiperda fat body transcriptome Refer to individual Series