Project description:BackgroundThe genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants.ResultsThe lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens.ConclusionsThe present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.
Project description:The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes. Furthermore, the observed heterozygosity (Ho), the expected heterozygosity (He), and the Shannon information index (I) were 0.5277, 0.4949, and 0.9394, respectively, which indicated a high level of genetic diversity. We detected high genetic differentiation among all sampling sites and restricted gene flow among populations. Bayesian-based cluster analysis (STRUCTURE), principal coordinates analysis (PCoA), and Neighbor-Joining (NJ) cluster analysis based on microsatellite markers grouped the populations into two clusters: the southern branch and the northern branch. The analysis also detected genetic barriers and restricted gene flow between the two groups separated by the Tanggula Mountains. This study indicates that the geographical isolation of the Tanggula Mountains restricted the genetic connection and the distinct niches on the two sides of the mountains increased the intraspecific divergence of the plants.
| S-EPMC6409646 | biostudies-literature
Project description:GBS raw sequence reads of Roscoea tibetica
Project description:The population of Caragana tibetica, situated on the edge of the typical grassland-to-desert transition in the Mu Us Sandy Land, plays a vital ecological role in maintaining stability within the regional fragile ecosystem. Despite the consistent growth of C. tibetica following animal grazing, the biological mechanisms underlying its compensatory growth in response to livestock consumption remain unclear. Analyzing 48 metabolomic profiles from C. tibetica, our study reveals that the grazing process induces significant changes in the metabolic pathways of C. tibetica branches. Differential metabolites show correlations with soluble protein content, catalase, peroxidase, superoxide dismutase, malondialdehyde, and proline levels. Moreover, machine learning models built on these differential metabolites accurately predict the intensity of C. tibetica grazing (with an accuracy of 83.3%). The content of various metabolites, indicative of plant stress responses, including Enterolactone, Narceine, and Folcepri, exhibits significant variations in response to varying grazing intensities (P<0.05). Our investigation reveals that elevated grazing intensity intensifies the stress response in C. tibetica, triggering heightened antioxidative defenses and stress-induced biochemical activities. Distinctive metabolites play a pivotal role in responding to stress, facilitating the plant's adaptation to environmental challenges and fostering regeneration.