Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Intratumoral heterogeneity underlies cancer treatment resistance, but approaches to neutralize it remain elusive. Here, we recast heterogeneity in a systems perspective that considers cancer cell functional tasks inherited from cells of origin. We apply Archetype Analysis to bulk transcriptomics data from small cell lung cancer (SCLC), which forms tumors composed of neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. SCLC subtypes fit well in a 5-dimensional polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterpart, and include injury repair, slithering, and chemosensation. SCLC cells near a vertex are specialists for a task, while more distant cells are generalists, bearing gene signatures of multiple archetypes. Evolutionary theory and dynamical systems modeling suggest a division of labor strategy for adaptation to treatment, based on task trade-offs amongst specialists and generalists. Cell Transport Potential, a metric derived from single-cell RNA velocity, uncovers plasticity trends from specialists to generalists, and NE to non-NE subtypes. Transcription factor network simulations indicate that MYC overexpression increases plasticity by de-stabilizing NE subtypes. Framing heterogeneity in archetype space provides insights into transformative cancer treatments aimed at tumor cell plasticity.
Project description:Intratumoral heterogeneity underlies cancer treatment resistance, but approaches to neutralize it remain elusive. Here, we recast heterogeneity in a systems perspective that considers cancer cell functional tasks inherited from cells of origin. We apply Archetype Analysis to bulk transcriptomics data from small cell lung cancer (SCLC), which forms tumors composed of neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. SCLC subtypes fit well in a 5-dimensional polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterpart, and include injury repair, slithering, and chemosensation. SCLC cells near a vertex are specialists for a task, while more distant cells are generalists, bearing gene signatures of multiple archetypes. Evolutionary theory and dynamical systems modeling suggest a division of labor strategy for adaptation to treatment, based on task trade-offs amongst specialists and generalists. Cell Transport Potential, a metric derived from single-cell RNA velocity, uncovers plasticity trends from specialists to generalists, and NE to non-NE subtypes. Transcription factor network simulations indicate that MYC overexpression increases plasticity by de-stabilizing NE subtypes. Framing heterogeneity in archetype space provides insights into transformative cancer treatments aimed at tumor cell plasticity.
Project description:Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered “generalist” and “specialist” archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 11-29% of the abundant NRE archetypes. Archetypes found in a particular site, “specialists”, were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe2+. A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H2S, respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among denitrifying communities and supports the essential role of individual community members in overall ecosystem function.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients. 12 samples were collected from two long-term polluted areas (Olkusz and Miasteczko M-EM-^ZlM-DM-^Eskie) in Southern Poland. In the study presented here, a consecutively operated, well-defined cohort of 50 NSCLC cases, followed up more than five years, was used to acquire expression profiles of a total of 8,644 unique genes, leading to the successful construction of supervised
Project description:Aeolian soil erosion, exacerbated by anthropogenic perturbations, has become one of the most alarming processes of land degradation and desertification. By contrast, dust deposition might confer a potential fertilization effect. To examine how they affect topsoil microbial community, we conducted a study GeoChip techniques in a semiarid grassland of Inner Mongolia, China. We found that microbial communities were significantly (P<0.039) altered and most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or remained unaltered in relative abundance by both erosion and deposition, which might be attributed to acceleration of organic matter mineralization by the breakdown of aggregates during dust transport and deposition. As a result, there were strong correlations between microbial carbon and nitrogen cycling genes. amyA genes encoding alpha-amylases were significantly (P=0.01) increased by soil deposition, reflecting changes of carbon profiles. Consistently, plant abundance, total nitrogen and total organic carbon were correlated with functional gene composition, revealing the importance of environmental nutrients to soil microbial function potentials. Collectively, our results identified microbial indicator species and functional genes of aeolian soil transfer, and demonstrated that functional genes had higher susceptibility to environmental nutrients than taxonomy. Given the ecological importance of aeolian soil transfer, knowledge gained here are crucial for assessing microbe-mediated nutrient cyclings and human health hazard. The experimental sites comprised of three treatments of control, soil erosion and deposition, with 5 replicates of each treatment.