Project description:We report transcriptome wide edits comparison between split-engineered base editors and intact base editors. Our results show that, split-engineered base editors show backgound levels of unique C>U edits when compared to intact base editors.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms. This SuperSeries is composed of the SubSeries listed below.
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.
Project description:CRISPR-Cas base editors are preferred tool for genome editing as they generate desired editing without any double strand break in the genome, as double stand break is detrimental to the cells. In our study we have demonstrated the significance of base editors in editing the highly homologous HBG promoter (HBG1 and HBG2) region to introduce novel HPFH-like mutation to elevate HbF for therapeutical applications. Previous studies revealed that the base editors can cause unintended Cas-independent edits at transcriptome level. To validate off-target at RNA level, we performed a transcriptome wide analysis. The frequency of unintended edits in the HUDEP-2 stable cell lines expressing the base editors with the gRNA were not significant compared to the control. We determined the ABE mediated A to I conversion and CBE mediated C to U conversion across the base edited samples. The RNA off-target analysis was carried out with the help of REDItools v 2 tool. This data suggests that despite high on-target editing in DNA, the Cas-independent RNA off-target were not at detectable range compared to control. The differential expression of 34 selected genes which necessitate globin regulation were compared between the unedited HUDEP WT, CBE control, ABE control, and edited ABE (with gRNA 2/11) and edited CBE (with gRNA 2/11). We observed that there is no significant differential gene expression between the edited and control cells except the gamma and delta globin genes. These results suggest that base editors are preferred tools to edit highly homologous HBG promoter region to created HPFH-like mutations inducing HbF levels without causing double strand breaks, larger deletions and no significant RNA off-targets which are detrimental to the gene edited cells.
Project description:Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.
Project description:Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.
Project description:A variety of base editors have been developed to achieve C-to-T editing in different genomic contexts. Here, we compare a panel of five base editors on their C-to-T editing efficiencies and product purity at commonly-editable sites, including some human pathogenic C-to-T mutations. We further profile the accessibilities of twenty base editors to all possible pathogenic mutations in silico. Finally, we build the BEable-GPS (Base Editable prediction of Global Pathogenic SNVs) database for users to select proper base editors to model or correct disease-related mutations. This in-vivo comparison and in-silico profiling catalogs the availability of base editors and their broad applications in biomedical studies.
Project description:Genetic manipulations to increase fetal hemoglobin (HbF, α2γ2) in postnatal red blood cells (RBCs) can alleviate β-thalassemia and sickle cell disease. We compared five strategies in CD34+ hematopoietic stem and progenitor cells, using either Cas9 nuclease, which creates uncontrolled indel mixtures, or adenine base editors (ABE), which generate more precise nucleotide changes. The most potent modification was ABE generation of γ-globin (HBG1/HBG2) −175 A>G, which creates a promoter binding motif for the transcriptional activator TAL1. In erythroid colonies with >87.5% on-target edits, those with −175 A>G expressed 81 ± 7% HbF, versus 17 ± 11% in unedited controls. In comparison, HbF levels were lower and more variable in erythroid cells modified with either of two Cas9 nuclease strategies with similar editing efficiencies, being 32 ± 19% when a BCL11A repressor binding motif in the γ-globin promoter was targeted and 52 ± 13% when the +58 BCL11A erythroid enhancer was targeted. Contrary to currently accepted models of γ-globin regulation, HbF levels varied significantly with different Cas9 indels that disrupted the γ-globin promoter BCL11A binding motif. The −175 A>G base edit also induced HbF more potently than did the Cas9 nuclease approaches in RBCs generated after transplantation of modified normal or SCD patient CD34+ cells into mice. Our data suggest a strategy for potent, uniform induction of HbF and provide insights into γ-globin gene regulation. More generally, we demonstrate that diverse indels generated by Cas9 nuclease can cause unexpected variations in biological outcomes that can be circumvented by base editing, with important implications for therapeutic gene editing efforts.