Project description:The CRISPR-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from Streptococcus pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1), Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) are orthogonal systems capable of operating simultaneously in zebrafish. We implemented multichannel CRISPR recording using up to three CRISPR systems, and show that LbaCas12a may provide superior information density compared to previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. These results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.
Project description:The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is the most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from S. pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1) are orthogonal systems capable of operating simultaneously in zebrafish. CRISPR systems from Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) were also active in embryos. We implemented multichannel CRISPR recording using three CRISPR systems and show that LbaCas12a may provide superior information density compared with previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. Our results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.
Project description:Induced pluripotent stem cell (iPSC) derived organoid systems provide models to study human organ development. Single-cell transcriptome sequencing enables highly-resolved descriptions of cell state heterogeneity within these systems and computational methods can reconstruct developmental trajectories. However, new approaches are needed to directly measure lineage relationships in these systems. Here we establish an inducible dual channel lineage recorder, iTracer, that couples reporter barcodes, inducible CRISPR/Cas9 scarring, and single-cell transcriptomics to analyze state and lineage relationships in iPSC-derived systems. This data set include the iTracer-perturb data of one cerebral organoid with simultaneous TSC2 perturbation and lineage recording.
Project description:CRISPR-based gene perturbation enables unbiased investigations of single and combinatorial genotype-to-phenotype associations. In light of efforts to map combinatorial gene dependencies at scale, choosing an efficient and robust CRISPR-associated (Cas) nuclease is of utmost importance. Even though SpCas9 and AsCas12a are widely used for single, combinatorial, and orthogonal screenings, side-by-side comparisons remain sparse. Here, we systematically compared combinatorial SpCas9, AsCas12a, and CHyMErA in hTERT-immortalized retinal pigment epithelial cells and extracted performance-critical parameters for combinatorial and orthogonal CRISPR screens. Our analyses identified SpCas9 to be superior to enhanced and optimized AsCas12a, with CHyMErA being largely inactive in the tested conditions. Since AsCas12a contains RNA processing activity, we used arrayed dual-gRNAs to improve AsCas12a and CHyMErA applications. While this negatively influenced the effect size of combinatorial AsCas12a applications, it enhanced the performance of CHyMErA. This improved performance, however, was limited to AsCas12a dual-gRNAs, as SpCas9 gRNAs remained largely inactive. To avoid the use of hybrid gRNAs for orthogonal applications, we engineered the multiplex SpCas9-enAsCas12a system (multiSPAS) that avoids RNA processing for efficient orthogonal gene editing.
Project description:Understanding the emergence of complex multicellular organisms from single totipotent cells, or ontogenesis, represents a foundational question in biology. The study of mammalian development is particularly challenging due to the difficulty of monitoring embryos in utero, the variability of progenitor field sizes, and the indeterminate relationship between the generation of uncommitted progenitors and their progression to subsequent stages. Here, we present a flexible, high information, multi-channel molecular recorder with a single cell (sc) readout and apply it as an evolving lineage tracer to define a mouse cell fate map from fertilization through gastrulation. By combining lineage information with scRNA-seq profiles, we recapitulate canonical developmental relationships between different tissue types and reveal an unexpected transcriptional convergence of endodermal cells from extra-embryonic and embryonic origins, illustrating how lineage information complements scRNA-seq to define cell types. Finally, we apply our cell fate map to estimate the number of embryonic progenitor cells and the degree of asymmetric partitioning within the pluripotent epiblast during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems to facilitate a quantitative framework for describing developmental processes.
Project description:In this work, we analyzed recognized PAM sequences from four CRISPR-Cas systems: E. coli I-E, B. halodurans I-C, S. thermophilus CR1 II-A, and F. novicida V. Cells containing functional PAMs were sorted using FACS and subsequently sequenced. Ranking of recognized PAMs from a positive screen
Project description:CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, III) each recognize and target destruction of foreign invader nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr proteins (Type III-B) associated with one of two primary size forms of crRNAs and functions through homology-dependent cleavage of target RNAs. In the current study, we have isolated and characterized two additional native Pfu CRISPR-Cas complexes containing either Csa (Type I-A) or Cst (Type I-G) proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by tandem mass spectrometry and immunoblotting and the crRNAs by RNA deep sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from each of seven total CRISPR loci and contain identical 5’ ends (8-nt CRISPR RNA repeat-derived 5’ tag sequences) but heterogeneous 3’ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3’ end processing pathways following primary cleavage of common pre-crRNAs. We predict that the newly identified Pfu Type I-A (Csa) and Type I-G (Cst)-containing crRNPs, like other previously characterized Type I CRISPR-Cas effector complexes, each function by carrying out crRNA-guided DNA targeting of invading mobile genetic elements. Taken together, our in-depth characterization of the three isolated native complexes provides clear evidence for three compositionally distinct crRNPs containing either Cmr, Csa, or Cst Cas proteins that together make up an impressive arsenal of CRISPR-Cas defense for a single organism. 4 Samples: Protein-associated small RNAs