Project description:Blueberry is one of the most desirable and nutritious fruits. During fruit development, the blueberry’s organoleptic properties and phytonutrient composition are ever-changing [1]. Blueberry fruit development is typically described in five phases: pads, cups, green, pink, and blue (ripe) [2]. The former two phases are referred to as the initial “expansion”. During expansion, young fruit is generally hard, dark green and distinguishable by size [3]. The latter three phases are referred to as maturation. Green fruit are hard and fully rounded green berries; pink berries are partially pigmented; blue (ripe) berries are fully colored and soft. Fruit maturation has attracted considerable research attention, and typically, the characteristics fruit softening, coloring, and sweetening are assessed [4].
2019-05-13 | PXD011815 | Pride
Project description:Development of fruit maturation in blueberry
Project description:In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis has identified 412 conserved miRNAs, which belong to 20 families, and 57 predicted novel miRNAs likely unique to blueberries. Among them, expression profiles of 5 conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of the abundant conserved and novel miRNAs were predicted and subjected for Gene Ontology (GO) annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were involved in a wide range of metabolic and developmental processes. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.
Project description:Environmental factors play an important role in anthocyanin biosynthesis, and potassium, an essential nutrient for blueberry growth, can act as an enzyme activator. However, few reports exist on the transcriptional and anthocyanin metabolic changes in blueberries regulated by potassium. In this study, blueberries treated with potassium at different stages were compared for changes in enzyme activity, transcription, and metabolism related to anthocyanin synthesis. The results showed that potassium treatment significantly enhanced the activities of key enzymes F3H, F3'5'H, and UFGT in the anthocyanin synthesis pathway of blueberry fruit. Metabolomic results indicated that the contents of malvidin, petunidin, and delphinidin were higher with potassium fertilization, and potassium treatment promoted the early color change of blueberry fruit. The transcriptome analysis identified 102 glucose metabolism-related genes and 12 differential potassium transport genes potentially involved in potassium-regulated anthocyanin synthesis and accumulation. It was found that thirteen genes relate to anthocyanin synthesis. UFGT, F3H, CHI, HCT, C12RT1, DFR, and F3'5'H were all closely associated with potassium-controlled flavonoid and anthocyanin metabolite synthesis. It provides valuable insights into the molecular mechanisms that regulate the synthesis of anthocyanins in blueberries.
Project description:Transcription profiling of carpel development in tomato strains RP75/59 and UC82. Samples: fruit 3 days post anthesis, carpel of flower anthesis, carpel of flower bud to pre-anthesis ( petals length between 7.5 and 9mm), Carpel of flower bud (petals length between 4.5 and 7 mm). Control plants and plants in which flowers were emasculated two days before anthesis were studied.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:In deciduous fruit trees, entrance into dormancy occurs in later summer/fall, concomitantly with the shortening of day length and decrease in temperature. Generally speaking, dormancy can be divided into endodormancy, ecodormancy and paradormancy. In Prunus species flower buds, entrance into the dormant stage occurs when the apical meristem is partially differentiated; during dormancy, flower verticils continue their growth and differentiation. In this work we focused our attention on flower bud development during winter in peach. In order to understand how bud development progress is regulated during winter we integrated cytological epigenetic and chromatin genome wide data with transcriptional outputs to obtained a complete picture of the main regulatory pathways involved in endodormancy.