Project description:Blueberry is one of the most desirable and nutritious fruits. During fruit development, the blueberry’s organoleptic properties and phytonutrient composition are ever-changing [1]. Blueberry fruit development is typically described in five phases: pads, cups, green, pink, and blue (ripe) [2]. The former two phases are referred to as the initial “expansion”. During expansion, young fruit is generally hard, dark green and distinguishable by size [3]. The latter three phases are referred to as maturation. Green fruit are hard and fully rounded green berries; pink berries are partially pigmented; blue (ripe) berries are fully colored and soft. Fruit maturation has attracted considerable research attention, and typically, the characteristics fruit softening, coloring, and sweetening are assessed [4].
2019-05-13 | PXD011815 | Pride
Project description:Development of fruit maturation in blueberry
Project description:In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis has identified 412 conserved miRNAs, which belong to 20 families, and 57 predicted novel miRNAs likely unique to blueberries. Among them, expression profiles of 5 conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of the abundant conserved and novel miRNAs were predicted and subjected for Gene Ontology (GO) annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were involved in a wide range of metabolic and developmental processes. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.
Project description:Transcription profiling of carpel development in tomato strains RP75/59 and UC82. Samples: fruit 3 days post anthesis, carpel of flower anthesis, carpel of flower bud to pre-anthesis ( petals length between 7.5 and 9mm), Carpel of flower bud (petals length between 4.5 and 7 mm). Control plants and plants in which flowers were emasculated two days before anthesis were studied.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:In deciduous fruit trees, entrance into dormancy occurs in later summer/fall, concomitantly with the shortening of day length and decrease in temperature. Generally speaking, dormancy can be divided into endodormancy, ecodormancy and paradormancy. In Prunus species flower buds, entrance into the dormant stage occurs when the apical meristem is partially differentiated; during dormancy, flower verticils continue their growth and differentiation. In this work we focused our attention on flower bud development during winter in peach. In order to understand how bud development progress is regulated during winter we integrated cytological epigenetic and chromatin genome wide data with transcriptional outputs to obtained a complete picture of the main regulatory pathways involved in endodormancy.
Project description:In this study, blueberry transcriptomics and rhizosphere fungal diversity were analyzed by simulated potting method to treat blueberries with Cd stress, and the content of Fe, Mn, Cu, Zn and Cd in each tissue, soil and DGT of blueberries were determined. , Combined with transcriptomics for correlation analysis. A total of 84374 annotated genes were obtained in blueberry roots, stems, leaves and fruits, of which 3370 DEGs were found, and DEGs in the stem accounted for the highest proportion, totaling 2521. The annotation results show that these DEGs are mainly concentrated in a series of metabolic pathways related to signal transduction, defense and pathogenic response. Blueberries transfer excess Cd from the root to the stem for storage. The stem contains the highest Cd content, which is consistent with the transcriptomics analysis results, while the fruit contains the lowest Cd content. Correlation analysis between heavy metal content and transcriptomics results in each tissue was carried out, and a series of genes related to Cd regulation were screened. The blueberry root system relies on mycorrhiza to absorb nutrients in the soil. The intervention of Cd has severely affected the microflora structure of the blueberry rhizosphere soil. Coniochaetaceae, which is extremely tolerant, has gradually become the dominant population.