Project description:Alga-derived lipids represent an attractive potential source of biofuels. However, lipid accumulation in algae is a stress response tightly coupled to growth arrest, thereby imposing a major limitation on productivity. To identify master regulators of lipid accumulation and decipher the regulation of lipid biosynthetic pathway, we performed an integrative chromatin signature and transcriptomic analysis in the alga Chlamydomonas reinhardtii. Genome-wide histone modification profiling revealed remarkable differences in functional chromatin states between algae and higher eukaryotes and uncovered regulatory components at the core of lipid accumulation pathways. We identified the transcription factor PSR1 as a pivotal master switch that triggers cytosolic lipid hyper-accumulation an order of magnitude higher than stress regimens have achieved. Dissection of the PSR1 target network corroborates its central role in coordinating multiple stress responses. The comprehensive maps of functional chromatin signatures in a major clade of eukaryotic life and the discovery of a central regulator of algal lipid metabolism will facilitate targeted engineering strategies in microalgae.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Improved understanding of lung transplant disease states is essential because failure rates are high, often due to chronic lung allograft dysfunction. However, histologic assessment of lung transplant transbronchial biopsies (TBBs) is difficult and often uninterpretable even with 10 pieces. All 242 single-piece TBBs produced reliable transcript measurements. Paired TBB pieces available from 12 patients showed significant similarity but also showed some sampling variance. Alveolar content, as estimated by surfactant transcript expression, was a source of sampling variance. To offset sampling variation, for analysis we selected 152 single-piece TBBs with high surfactant transcripts. Unsupervised archetypal analysis identified four idealized phenotypes (archetypes) and scored biopsies for their similarity to each: normal, T cell-mediated rejection (TCMR; T cell transcripts), antibody-mediated rejection (ABMR)-like (endothelial transcripts), and injury (macrophage transcripts). Molecular TCMR correlated with histologic TCMR. The relationship of molecular scores to histologic ABMR could not be assessed because of the paucity of ABMR in this population. Molecular assessment of single-piece TBBs can be used to classify lung transplant biopsies and correlated with rejection histology. Two or three pieces for each TBB will probably be needed to offset sampling variance.
2019-08-16 | GSE125478 | GEO
Project description:Reinvestigating the phylogeny of Myriapoda with more extensive taxon sampling and novel genetic perspective
Project description:Candida auris clade III isolate B12039 was spread on YPD plate supplemented with 128 µg/ml fluconazole. Randomly 39 adaptors were chosen for further analysis. We did sequencing of them as as well as the parent.