Project description:Atmospheric CO2 is increasing due to anthropogenic causes. Approximately 30% of this CO2 is being absorbed by the oceans and is causing ocean acidification (OA). The effects of OA on calcifying organisms are starting to be understood, but less is known about the effects on non-calcifying organisms, notably elasmobranchs. One of the few elasmobranch species that has been studied with respect to OA is the epaulette shark, Hemiscyllium ocellatum. Mature epaulette sharks can physiologically and behaviourally tolerate prolonged exposure to elevated CO2, and this is thought to be because they are routinely exposed to diurnal decreases in O2 and probably concomitant increases in CO2 in their coral reef habitats. It follows that H. ocellatum embryos, while developing in ovo on the reefs, would have to be equally if not more tolerant than adults because they would not be able to escape such conditions. Epaulette shark eggs were exposed to either present-day control conditions (420 µatm) or elevated CO2 (945 µatm) and observed every 3 days from 10 days post-fertilization until 30 days post-hatching. Growth (in square centimetres per day), yolk usage (as a percentage), tail oscillations (per minute), gill movements (per minute) and survival were not significantly different in embryos reared in control conditions when compared with those reared in elevated CO2 conditions. Overall, these findings emphasize the importance of investigating early life-history stages, as the consequences are expected to transfer not only to the success of an individual but also to populations and their distribution patterns.
Project description:Climate change is affecting thermal regimes globally, and organisms relying on their environment to regulate biological processes face unknown consequences. In ectotherms, temperature affects development rates, body condition, and performance. Embryonic stages may be the most vulnerable life history stages, especially for oviparous species already living at the warm edge of their distribution, as embryos cannot relocate during this developmental window. We reared 27 epaulette shark (Hemiscyllium ocellatum) embryos under average summer conditions (27 °C) or temperatures predicted for the middle and end of the twenty-first century with climate change (i.e., 29 and 31 °C) and tracked growth, development, and metabolic costs both in ovo and upon hatch. Rearing sharks at 31 °C impacted embryonic growth, yolk consumption, and metabolic rates. Upon hatch, 31 °C-reared sharks weighed significantly less than their 27 °C-reared counterparts and exhibited reduced metabolic performance. Many important growth and development traits in this species may peak after 27 °C and start to become negatively impacted nearing 31 °C. We hypothesize that 31 °C approximates the pejus temperature (i.e., temperatures at which performance of a trait begin to decline) for this species, which is alarming, given that this temperature range is well within ocean warming scenarios predicted for this species' distribution over the next century.