Project description:We here longitudinally investigated how spinal muscular atrophy (SMA) and nusinersen shaped local immune responses in the cerebrospinal fluid (CSF).
Project description:<p>Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA. </p>
Project description:Study of gene expression profiles of muscular and neuronal mouse mutant of spinal muscular atrophy(SMA). Pre and post symptomatic stage disease have been analyzed.
Project description:VRK1 mutations in humans cause a severe neuronal phenotype includung spinal muscular atrophy (SMA) and microcephaly. To study the effect of VRK1 R358X mutation on global gene expression in a homozygote human patient, an expression array was performed using EBV-trasformed B cells from the patient and two healthy controls Gene expression was measured in EBV-transformed B cells from from a VRK1 R358X homozygote and two healthy controls.
Project description:VRK1 mutations in humans cause a severe neuronal phenotype includung spinal muscular atrophy (SMA) and microcephaly. To study the effect of VRK1 R358X mutation on global gene expression in a homozygote human patient, an expression array was performed using EBV-trasformed B cells from the patient and two healthy controls
Project description:TRIP4 is one of the subunits of the transcriptional coregulator ASC-1, a ribonucleoprotein complex that participates in transcriptional coactivation and RNA processing events. Recessive variants in the TRIP4 gene have been associated with spinal muscular atrophy with bone fractures as well as a severe form of congenital muscular dystrophy. Here we present the diagnostic journey of a patient with cerebellar hypoplasia and spinal muscular atrophy (PCH1) and congenital bone fractures. Initial exome sequencing analysis revealed no candidate variants. Reanalysis of the exome data by inclusion in the Solve-RD project resulted in the identification of a homozygous stop-gain variant in the TRIP4 gene, previously reported as disease-causing. This highlights the importance of analysis reiteration and improved and updated bioinformatic pipelines. Proteomic profile of the patient’s fibroblasts showed altered RNA-processing and impaired exosome activity supporting the pathogenicity of the detected variant. In addition, we identified a novel genetic form of PCH1, further strengthening the link of this characteristic phenotype with altered RNA metabolism.
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPSC) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess the global gene expression profile as well as splicing events of iPS-derived motorneurons from SMA patient, unaffected father and TGC-treated cells. The microarray data derived from three different groups: SMA patient, healty father and treated SMA patient's cells. Each population consists of three RNA profiling cell samples.