Project description:Metformin is the therapy of choice for treating type 2 diabetes and is currently repurposed for a wide range of diseases including aging. Recent evidence implicates the gut microbiota as a site of metformin action. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed C. elegans RNAseq to investigate the role of the metformin sensitive OP50 and metformin resistant OP50-MR E. coli microbiota in the drug effects on the host. Our data suggest an evolutionarily conserved bacterial mediation of metformin effects on host lipid metabolism and lifespan.
Project description:Inflammation, oxidative and dicarbonyl stress play important roles in the pathophysiology of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver, however, its “pleiotropic“ effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP). In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL6 while levels of human CRP remained unchanged and metformin also significantly reduced oxidative stress (levels of conjugated dienes and TBARS) in the liver while no significant effects were observed in SHR control rats. In addition, in the presence of high human CRP, metformin reduced methylglyoxal levels in left ventricles but not in kidneys. Finally, metformin treatment reduced adipose tissue lipolysis. Possible molecular mechanisms of metformin action studied by gene expression profiling in the liver revealed deregulated genes from inflammatory, insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP metformin protects against inflammation, oxidative and dicarbonyl stress in the heart and ameliorates insulin resistance and dyslipidemia.
Project description:Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin’s modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states. The high-fat diet-induced type 2 diabetes mouse model of both sexes was developed in a randomized block experiment and bulk RNA-Seq of the ileum tissue was the method of choice for comparative transcriptional profiling after metformin intervention for ten weeks. We found a prominent transcriptional effect of the diet itself with comparatively fewer genes responding to metformin intervention. The overrepresentation of immune-related genes was observed, including pronounced metformin-induced upregulation of immunoglobulin heavy-chain variable regioncoding Ighv1-7 gene in both high-fat diet and control diet-fed animals, supporting the contribution of intestinal immunoglobulin responses. Finally, we provide evidence of the downregulation NF-kappa B signaling pathway in the small intestine of both hyperglycemic and normoglycemic animals after metformin treatment. Moreover, our data pinpoint the gut microbiota as a crucial component in the metformin-mediated downregulation of NF-kappaB signaling evidenced by a positive correlation between the Rel and Rela gene expression levels and abundances of Parabacteroides distasonis, Bacteroides spp., and Lactobacillus spp. in the gut microbiota of the same animals.
Project description:Objective: To study the effect of astragalus polysaccharide combined with metformin on mRNA expression profile of type 2 diabetic mice, and to explore the molecular mechanism of astragalus polysaccharide combined with metformin in the treatment of type 2 aging diabetes. Methods: Natural aging mice were induced by high-sugar and high-fat diet combined with streptozotocin to prepare aging diabetes model. The experimental mice were divided into aging control group, aging diabetes model group, metformin treatment group, astragalus polysaccharide and metformin. The treatment group was treated with gavage for 60 consecutive days. Immunohistochemical detection of insulin levels in pancreatic tissue of each group of mice, serum insulin levels were measured by mouse insulin kit to observe the treatment of aging diabetes and astragalus polysaccharide combined with metformin; using Agilent mouse whole gene expression profile chip The mRNA expression changes of liver tissues in each group were analyzed, and the differential genes were screened by bioinformatics tools and the differential genes and signal pathways were enriched and analyzed. Results: Compared with the aging group, the insulin and insulin antibody levels in the model group were significantly decreased (P<0.05). Compared with the model group, the insulin and insulin antibody levels in the two treatment groups increased (P<0.05), and jaundice The level of polysaccharide in combination with metformin was significantly higher than that in metformin group (P<0.05). The differential gene analysis of the chip showed that there were 5617 differential genes in the aging diabetes model group, 3131 were up-regulated, and 2486 were down-regulated; the Astragalus polysaccharide combined with metformin treatment group had 4767 differential genes, compared with the aging diabetes model group. 2143 up-regulated, 2624 down-regulated, genes with significant differences were mainly involved in protease activity and drug metabolism, and significantly enriched into 33 signaling pathways (P<0.01). Conclusion: The gene regulatory network plays an important role in the intervention of Astragalus polysaccharides and metformin in the treatment of aging type 2 diabetes.
Project description:Objective: To study the effect of astragalus polysaccharide combined with metformin on mRNA expression profile of type 2 diabetic mice, and to explore the molecular mechanism of astragalus polysaccharide combined with metformin in the treatment of type 2 aging diabetes. Methods: Natural aging mice were induced by high-sugar and high-fat diet combined with streptozotocin to prepare aging diabetes model. The experimental mice were divided into aging control group, aging diabetes model group, metformin treatment group, astragalus polysaccharide and metformin. The treatment group was treated with gavage for 60 consecutive days. Immunohistochemical detection of insulin levels in pancreatic tissue of each group of mice, serum insulin levels were measured by mouse insulin kit to observe the treatment of aging diabetes and astragalus polysaccharide combined with metformin; using Agilent mouse whole gene expression profile chip The mRNA expression changes of liver tissues in each group were analyzed, and the differential genes were screened by bioinformatics tools and the differential genes and signal pathways were enriched and analyzed. Results: Compared with the aging group, the insulin and insulin antibody levels in the model group were significantly decreased (P<0.05). Compared with the model group, the insulin and insulin antibody levels in the two treatment groups increased (P<0.05), and jaundice The level of polysaccharide in combination with metformin was significantly higher than that in metformin group (P<0.05). The differential gene analysis of the chip showed that there were 5617 differential genes in the aging diabetes model group, 3131 were up-regulated, and 2486 were down-regulated; the Astragalus polysaccharide combined with metformin treatment group had 4767 differential genes, compared with the aging diabetes model group. 2143 up-regulated, 2624 down-regulated, genes with significant differences were mainly involved in protease activity and drug metabolism, and significantly enriched into 33 signaling pathways (P<0.01). Conclusion: The gene regulatory network plays an important role in the intervention of Astragalus polysaccharides and metformin in the treatment of aging type 2 diabetes.
Project description:The link between the gut microbiota and type 2 diabetes (T2D) warrants further investigation because of known confounding effects from antidiabetic treatment. Here we profiled the gut microbiome in a discovery (n=1011) and validation (n=484) cohort comprising Swedish subjects naive for diabetes treatment and grouped by glycemic status.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Finally differentiated 3T3-L1 adipocytes are treated with insulin (0 or 100nM)or metformin (0 or 2mM)for 2 and 12 hours to understand insulin and metformin(an anti-diabetic drug commonly applied for Non-Insulin Dependent Diabetes Mellitus)action in adipose tissues.
Project description:Metformin is a medication that is commonly used in the treatment of diabetes. Recently small studies in cancer patients without diabetes suggest that metformin may benefit in lowering insulin levels. In those studies of patients with cancer but not diabetes, glucose (or sugar) levels in the blood are generally no lowered. Insulin and insulin-like growth factors affect the growth of cancer cells.
This randomized study will compare different interventions; exercise, exercise and metformin, metformin alone, or a control arm. The investigators are not directly testing how either exercise or metformin affects your disease. The investigators are testing how they affect insulin levels in your body as well as other blood markers. The investigators believe that these blood tests may either be related to cancer recurrences or be an early sign of cancer recurrences and they are testing how both exercise and metformin may change those markers.
Project description:Metformin is the front-line treatment for type 2 diabetes worldwide. It acts via effects on glucose and lipid metabolism in metabolic tissues, leading to enhanced insulin sensitivity. Despite significant effort, the molecular basis for metformin response remains poorly understood, with a limited number of specific biochemical pathways studied to date. To broaden our understanding of hepatic metformin response, we combine phospho-protein enrichment in tissue from genetically engineered mice with a quantitative proteomics platform to enable the discovery and quantification of basophilic kinase substrates in-vivo. We define proteins that binding to 14-3-3 are acutely regulated by metformin treatment and/or loss of the serine/threonine kinase, LKB1. Inducible binding of 250 proteins following metformin treatment is observed, 44% LKB1-dependent. Beyond AMPK, metformin activates Protein Kinase D and MAPKAPK2 in an LKB1-independent manner, revealing additional kinases that may mediate aspects of metformin response. Deeper analysis uncovered substrates of AMPK in endocytosis and calcium homeostasis.