Project description:Isoquinolines (IQs) are natural substances with antibiotic potential. IQ-238 is a synthetic analog of the novel-type N,C-coupled naphtylisoquinoline (NIQ) alkaloid ancisheynine. Gene expression data, cytotoxicity measurements and metabolic modelling is combined to assess the effects of the N,C-coupled naphtylisoquinoline (NIQ) compound IQ-238 on Staphylococcus aureus and man as a potential lead for novel antibiotics. It possesses a high activity against staphylococci but has low cytotoxicity in human cell lines. Genome annotation identified missed enzymes (validated by PCR) in the primary (e.g. nucleotide) metabolism of staphylococci. Gene expression changed after cultivation with IQ-238. Metabolic modelling did yield the adaptations of all central enzymes, including those not affected by significant gene expression changes. The data show that IQ-238 interferes with the carbohydrate metabolism in staphylococci. The data suggest that IQ-238 is a promising lead for antibiotic therapy against S. aureus infections. HG001 WT strain exposed to GB-AP-238 in rich medium
Project description:Isoquinolines (IQs) are natural substances with antibiotic potential. IQ-238 is a synthetic analog of the novel-type N,C-coupled naphtylisoquinoline (NIQ) alkaloid ancisheynine. Gene expression data, cytotoxicity measurements and metabolic modelling is combined to assess the effects of the N,C-coupled naphtylisoquinoline (NIQ) compound IQ-238 on Staphylococcus aureus and man as a potential lead for novel antibiotics. It possesses a high activity against staphylococci but has low cytotoxicity in human cell lines. Genome annotation identified missed enzymes (validated by PCR) in the primary (e.g. nucleotide) metabolism of staphylococci. Gene expression changed after cultivation with IQ-238. Metabolic modelling did yield the adaptations of all central enzymes, including those not affected by significant gene expression changes. The data show that IQ-238 interferes with the carbohydrate metabolism in staphylococci. The data suggest that IQ-238 is a promising lead for antibiotic therapy against S. aureus infections.
Project description:Staphylococci are major pathogens in humans and animals and emerging antibiotic-resistant strains have further increased the importance of this health issue. The existence of a genetic basis of host response to bacterial infections has been widely documented but the underlying mechanisms and genes are still largely unknown. Previously, two divergent lines of sheep selected on their milk somatic cell count called high and low SCS lines, have been showed to be respectively more and less susceptible to intra mammary infections (IMI). Transcriptional profiling of milk somatic cells (MSC) of high and low SCS sheep infected successively by S. epidermidis and S. aureus was performed to provide enhanced knowledge about the genetic basis of differential host response to IMI with Staphylococci. Gene expression in MSC of high and low SCS sheep collected 12h post-challenge was performed on a 15K gene ovine oligoarray (Agilent). MSC were mainly neutrophils. The high number of differentially expressed genes between the two bacterial strains indicated, among others, increased number of T-cells in MSC after S. aureus, compared to S. epidermidis challenge. Differential regulation of 366 genes between resistant and susceptible animals was largely associated with immune and inflammatory response (including pathogen recognition TLR2 pathway and cell migration), signal transduction, cell proliferation and apoptosis. Close biological connection between most of differentially expressed genes into Ingenuity Pathway Analysis networks further indicated consistency between the genes that were differentially-expressed between resistant and susceptible animals. Gene profiling in high and low SCS sheep provided strong candidates for biological pathway and gene underlying genetically determined resistance and susceptibility towards Staphylococci infections opening new fields for further investigation. Keywords: Staphylococcus epidermidis, Staphylococcus aureus, milk somatic cells, mammalian, transcriptome, immunity, mastitis 22 samples in a two-colour dye-swap experimental design
Project description:Staphylococci are major pathogens in humans and animals and emerging antibiotic-resistant strains have further increased the importance of this health issue. The existence of a genetic basis of host response to bacterial infections has been widely documented but the underlying mechanisms and genes are still largely unknown. Previously, two divergent lines of sheep selected on their milk somatic cell count called high and low SCS lines, have been showed to be respectively more and less susceptible to intra mammary infections (IMI). Transcriptional profiling of milk somatic cells (MSC) of high and low SCS sheep infected successively by S. epidermidis and S. aureus was performed to provide enhanced knowledge about the genetic basis of differential host response to IMI with Staphylococci. Gene expression in MSC of high and low SCS sheep collected 12h post-challenge was performed on a 15K gene ovine oligoarray (Agilent). MSC were mainly neutrophils. The high number of differentially expressed genes between the two bacterial strains indicated, among others, increased number of T-cells in MSC after S. aureus, compared to S. epidermidis challenge. Differential regulation of 366 genes between resistant and susceptible animals was largely associated with immune and inflammatory response (including pathogen recognition TLR2 pathway and cell migration), signal transduction, cell proliferation and apoptosis. Close biological connection between most of differentially expressed genes into Ingenuity Pathway Analysis networks further indicated consistency between the genes that were differentially-expressed between resistant and susceptible animals. Gene profiling in high and low SCS sheep provided strong candidates for biological pathway and gene underlying genetically determined resistance and susceptibility towards Staphylococci infections opening new fields for further investigation. Keywords: Staphylococcus epidermidis, Staphylococcus aureus, milk somatic cells, mammalian, transcriptome, immunity, mastitis
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:In a given bacterial population, antibiotic treatment kills a large portion of the population, while a small, tolerant subpopulation survives. Tolerant cells disrupt the efficacy of antibiotic treatment and increase the likelihood that a population gains antibiotic resistance. Antibiotic tolerance is different from resistance because tolerant cells cannot grow and replicate in the presence of the antibiotic, but when the antibiotic is removed, they begin to propagate. When a population becomes resistant, the antibiotic becomes ineffective, which is a major health concern. Since antibiotic tolerance often leads to antibiotic resistance, we have taken a systems biology approach to examine how regulatory networks respond to antibiotic stress so that cells can survive and recover after antibiotic treatment. We have compared gene expression with and without ampicillin in E. coli.