Project description:We utilize the natural cell line model (LMH and DF1) with different susceptibiltiy to H9N2 avian influenza virus to find out more and new potential key factors of influencing AIV infection and replication via a high-throughput RNA sequencing (RNA-seq).
2019-07-04 | GSE133771 | GEO
Project description:The transcriptomes of rodent for virus discovery
| PRJNA1079226 | ENA
Project description:The transcriptomes of rodent for virus discovery
Project description:Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. We interrogated host-pathogen dynamics in a novel murine GDM model of GBS colonization and perinatal transmission. GDM mice had greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing revealed differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM disruption of immunity included reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered vaginal cytokines. Lastly, we observed distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Our translational model of GBS perinatal transmission in GDM hosts recapitulates several clinical aspects and enables discovery of host and bacterial drivers of GBS perinatal disease.
2023-07-05 | GSE236335 | GEO
Project description:Human transmission kinetics during natural influenza virus infection
Project description:MicroRNAs (miRNAs) are small regulatory RNAs processed from stem-loop regions of primary transcripts (pri-miRNAs), with the choice of stem-loops for initial processing largely determining what becomes a miRNA. To identify sequence and structural features influencing this choice, we determined cleavage efficiencies of >50,000 variants of three human pri-miRNAs, focusing on the regions intractable to previous high-throughput analyses. Our analyses revealed a mismatched motif in the basal stem region, a preference for maintaining or improving base-pairing throughout the remainder of the stem, and a narrow stem-length preference of 35±1 base pairs. Incorporating these features with previously identified features, including three primary-sequence motifs, yielded a unifying model defining mammalian pri-miRNAs, in which motifs help orient processing and increase efficiency, with the presence of more motifs compensating for structural defects. This model enables generation of artificial pri-miRNAs, designed de novo, without reference to any natural sequence, yet processed more efficiently than natural pri-miRNAs.
Project description:The disease biology of frontotemporal lobe dementia (FTD) is complex and not fully understood, with limited translational value appreciated from animal models to date. Human cellular systems that can recapitulate phenotypic features of disease offer promise as translational tools to not only increase our understanding of disease processes but also increase the probability of success of translating novel treatment options to patients. However not all researchers may necessarily have access to well characterized induced pluripotent stem cell (iPSC)-derived human neurons. We therefore sought to comprehensively profile phenotypic features over time in one commercially-available IPSC-derived human neuron cell line. This included systems-level assessments of neurite outgrowth dynamics, neuronal network function and genome-wide gene expression. By investigating progranulin biology as an example we then demonstrated utility of these cells as a tool to investigate human disease biology. For example, by using siRNA-mediated knockdown of the progranulin (GRN) gene, we demonstrated establishment of an isogenic human cellular model to facilitate translational FTD research. We reproduced findings from rodent neurons by demonstrating that recombinant progranulin (rPGRN) mediated neuroprotection. Contrary to previous rodent data, in our human cellular models, growth factor treatment showed no consistent sensitivity to modulate neurite outgrowth dynamics. Our study further provides first evidence that rRPGRN modulated neuronal firing and synchrony in human neurons. Taken together, our datasets are a valuable systems-level resource demonstrating the utility of the tested commercially-available human iPSC neurons for investigating basic human neurobiology, translational neuroscience, and drug discovery applications in neurodegenerative and other CNS diseases.
Project description:MicroRNAs (miRNAs) are small regulatory RNAs processed from stem-loop regions of primary transcripts (pri-miRNAs), with the choice of stem-loops for initial processing largely determining what becomes a miRNA. To identify sequence and structural features influencing this choice, we determined cleavage efficiencies of >50,000 variants of three human pri-miRNAs, focusing on the regions intractable to previous high-throughput analyses. Our analyses revealed a mismatched motif in the basal stem region, a preference for maintaining or improving base-pairing throughout the remainder of the stem, and a narrow stem-length preference of 35±1 base pairs. Incorporating these features with previously identified features, including three primary-sequence motifs, yielded a unifying model defining mammalian pri-miRNAs, in which motifs help orient processing and increase efficiency, with the presence of more motifs compensating for structural defects. This model enables generation of artificial pri-miRNAs, designed de novo, without reference to any natural sequence, yet processed more efficiently than natural pri-miRNAs. Three major experiments are included in the submitted data. 1) Pools of synthetic DNA containing barcodes and pri-miRNA variants were sequenced to infer the barcode-pri-miRNA linkages, and the pri-miRNA variants were assayed for their cleavage efficiency ("selection"), which can be quantified by comparing their representations in the input and after cleavage. 2) Artificial miRNAs produced in HEK293T cells were sequenced. 3) Transcriptomes of artificial miRNA-expressed cells were sequenced to quantify mRNA changes.
Project description:Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe clinical symptoms and mortality in humans. Haemaphysalis longicornis tick has been identified as the competent vector for SFTSV transmission. Although antiviral RNA interference (RNAi) in insects has been well documented, the degree to which RNAi contributes to antiviral defense in ticks is still largely elusive. In this study, utilizing arthropod-borne RNA viruses, including SFTSV, we find abundant virus-derived small interfering RNAs (vsiRNAs) are induced in H. longicornis after infection through either microinjection or natural blood-feeding. Furthermore, we identify a Dicer2-like homolog, the core protein of antiviral RNAi pathway, in H. longicornis and knocking down this gene exacerbated virus amplification. To counteract this antiviral RNAi of ticks, viruses have evolved suppressors of RNAi (VSRs). Here, we show that reduced viral replication inversely correlated with the accumulation of vsiRNAs in ticks after infection with recombinant sindbis virus (SINV) expressing heterologous VSR proteins. Elucidating the antiviral RNAi pathway of ticks by model arthropod-borne RNA viruses in vivo is critical to understanding the virus-host interaction, providing a feasible intervention strategy to control tick-borne arbovirus transmission.