Project description:The aim of this study was to investigate ecotypic adaptation in Holcus lanatus in plants selected from two widely contrasting habitats, acid bog (pH 3.5) or limestone quarry spoil (pH 7.5), using a transcriptome based analysis approach including sequence analysis of root associated Glomeromycota. Differential gene expression in root and shoot of naturally occurring H. lanatus ecotypes, selected from either habitat and grown in a full factorial reciprocal soil transplant experiment were investigated and ecotype specific SNPs identified.
Project description:Thiosulfate- and hydrogen-driven autotrophic denitrification by a model consortium enriched from groundwater of an oligotrophic limestone aquifer
Project description:The leaf transcriptome of the nickel hyperaccumulator Leucocroton havanensis (Euphorbiaceae) living on serpentine Cuabal, from Cuba, was compared to the closely related non-accumulator Lasiocroton microphyllus living on Gallery forest on limestone soil, to identity differentially expressed genes potentially involved in Ni hyperaccumulation.
Project description:The leaf transcriptome of the nickel hyperaccumulator Geissois pruinosa (Rubiaceae) endemic from New Caledonia was compared to the closely related non-accumulator Geissois racemosa, living respectively in serpentine maquis or rainforest on limestone, to identity differentially expressed genes potentially involved in Ni hyperaccumulation.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:A novel contact-separation triboelectric generator concept is proposed in this paper, which consists of a limestone-based mounting putty and a metallized polyester (PET/Al) sheet. This is an attempt to explore tacky materials for power generation and extend the operational frequency bandwidth compared to existing TriboElectric NanoGenerators (TENGs). Moreover, the proposed design is very cost-effective and easy to build. Unlike traditional TENGs, which generate power solely due to a charge developing on the surface, the putty also replies on charge developed inside the material. Parametric study was conducted to determine the optimal putty thickness in a shaker test at 40 Hz. It was found that a putty layer at 0.6 mm thick yielded maximum power generation. During the separation phase, the electrical breakdown between triboelectric layers allows most existing electrons to flow back from the ground due to rapid charge removal at the interface. We are able to achieve a peak power of 16 mW in a shaker test at 40 Hz with an electrical load of 8 MΩ, which corresponds to a power density of 25.6 W/m2. A peak power of 120 mW in a manual prototype generator is achieved, which operates at approximately 2 Hz. Since putty material has less tackiness than double-sided tape, we are able to expand the frequency bandwidth up to 80 Hz, which is significantly higher than a TENG (typically <10 Hz). The mounting putty material contains limestone with approximate 31 nm of mean grain size mixed with synthetic rubber materials. Elasticity from rubber and the nanohardness of calcite crystallites allow us to operate a putty generator repeatedly without the concern of grain fracture. Also, a durability test was conducted with up to 250,000 contact-separation cycles. In summary, comparable performance is achieved in the proposed putty generator to benefit energy harvesting and sensor applications.