Project description:Protein disulfide isomerase (PDI) is an oxidoreductase responsible for the formation, reduction and isomerization of disulfide bonds of nascent proteins in endoplasmic reticulum (ER). So far, the role of PDI in bone biology has never been characterized using genetically-modified animal models. In this study we generated osteoblast- specific PDI-deficient mice by crossing PDI-floxed (PDIfl/fl) mice with Osx-Cre mice. Compared with their littermate control PDIfl/fl mice, homozygous osteoblast-knockout mice (Osx-Cre/PDIfl/fl) were embryonically lethal, but heterozygous knockout mice (Osx-Cre/PDIfl/wt) displayed significantly pronounced growth retardation and reduced bone length. Besides, the decreases in bone density, osteoblast and osteoclast numbers, collagen fiber content and bone formation rate were observed in Osx-Cre/PDIfl/wt mice. Osteoblast precursors isolated from PDIfl/fl mice were infected with Cre recombinant adenovirus to produce PDI-deficient osteoblasts, followed by induction of differentiation. Osteoblasts deficient of PDI had decreased alkaline phosphatase activity, mineralizing capacity, and differentiation. Quantitative protein mass spectrometry analysis and immunoblotting showed that PDI deficiency markedly decreased the expression of the α-subunits of collagen prolyl 4-hydroxylase (C-P4H), including P4HA1, P4HA2 and P4HA3. These results demonstrate that PDI plays an essential role in osteoblast differentiation and bone formation and is required for the expression of the α-subunit of C-P4H in osteoblasts.
Project description:Osteoblast differentiation leading to bone formation requires a coordinated transcriptional program. We have recently demonstrated that microtubule actin crosslinking factor 1 (MACF1) promotes osteoblast differentiation, suggesting a key role in regulating early-phase osteoblast differentiation. Here, we showed that the early-phase osteoblast differentiation transcriptome dynamics was regulated by MACF1 and the transcription of TCF7/LEF1, key effectors of Wnt signaling that is important for osteoblast differentiation was suppressed by MACF1 knockdown. Co-IP and Protein mass spectrometry revealed that MACF1 interacted with a known and two previously unknown repressors of TCF7/LEF1, DKK1, CDK12 and MEAF6. ChIP-seq analysis of MACF1-associated promoters further revealed that MACF1 interacted with transcription factors TCF12 and E2F6, which also suppressed the transcription of TCF7/LEF1. Furthermore, all these four MACF-interacted proteins inhibited osteoblast differentiation. By studying the underlying mechanism, we found that cytoplasmic-nuclear localization of MACF1 was dependent on its level and the cytoplasmic-nuclear localization of TCF12 and E2F6 was regulated by MACF1 localization. In addition, MACF1 oppositely regulated the transcription activity of TCF12 and TCF7. Current study, for the first time to our knowledge, suggest that MACF1 acts as a sponge of osteoblast differentiation repressors to promote osteoblast differentiation, and indicate a novel mechanism for regulating the cellular location of transcription factors by a protein associated with microtubule and actin.
Project description:Transitions between cell fates commonly occur in development and disease. The vascular endothelium is an essential contributor of osteoprogenitors to vascular calcification through endothelial-mesenchymal transitions, in which endothelial cells (ECs) gain plasticity and differentiate into osteoblast-like cells. Transcriptome profiling reveals transcriptional regulation in osteoblastic fate to endothelial differentiation.
Project description:The expression of Glis3 in C3H10T1/2 cells promotes osteoblastic differentiation as indicated by the the induction of increase in alkaline phosphatase activity, an early marker of osteoblast differentiation, and increased expression of osteopontin, a late marker of osteogenesis. Glis3 acts synergistically with bone morphogenic protein 2 (BMP-2). In contrast, expression of Glis3 inhibits the induction of adipocyte differentiation. Microarray analysis identified the fibroblast growth factor 18 (FGF18) as one of the genes induced by Glis3 in C3H10T1/2 cells directly. Keywords: Glis3, osteoblast differentiation, adipocyte differentiation, FGF18, BMP2
Project description:Differentiation Time Course; examination of osteoblast differentation by comparing cells exposed to growth factors with ctrl cells. Experiment Overall Design: this experiment include 7 samples and 42 replicates
Project description:Osteoblast differentiation leading to bone formation requires a coordinated transcriptional program. We have recently demonstrated that microtubule actin crosslinking factor 1 (MACF1) promotes osteoblast differentiation, suggesting a key role in regulating early-phase osteoblast differentiation. Here, we showed that the early-phase osteoblast differentiation transcriptome dynamics was regulated by MACF1 and the transcription of TCF7/LEF1, key effectors of Wnt signaling that is important for osteoblast differentiation was suppressed by MACF1 knockdown. Co-IP and Protein mass spectrometry revealed that MACF1 interacted with a known and two previously unknown repressors of TCF7/LEF1, DKK1, CDK12 and MEAF6. ChIP-seq analysis of MACF1-associated promoters further revealed that MACF1 interacted with transcription factors TCF12 and E2F6, which also suppressed the transcription of TCF7/LEF1. Furthermore, all these four MACF-interacted proteins inhibited osteoblast differentiation. By studying the underlying mechanism, we found that cytoplasmic-nuclear localization of MACF1 was dependent on its level and the cytoplasmic-nuclear localization of TCF12 and E2F6 was regulated by MACF1 localization. In addition, MACF1 oppositely regulated the transcription activity of TCF12 and TCF7. Current study, for the first time to our knowledge, suggest that MACF1 acts as a sponge of osteoblast differentiation repressors to promote osteoblast differentiation, and indicate a novel mechanism for regulating the cellular location of transcription factors by a protein associated with microtubule and actin.
Project description:Differentiation Time Course; examination of osteoblast differentation by comparing cells exposed to growth factors with ctrl cells. Keywords: other