Project description:Elucidating the genetic mechanisms that underlie complex adaptive phenotypes is a central problem in evolutionary biology. For behavioral biologists, the ability to link variation in gene expression to the occurrence of specific behavioral traits has long been a largely unobtainable goal. Social interactions with conspecifics represent a fundamental component of the behavior of most animal species. Although several studies of mammals have attempted to uncover the genetic bases for social relationships using a candidate gene approach, none have attempted more comprehensive, transcriptome-based analyses using high throughout sequencing. As a first step toward improved understanding of the genetic underpinnings of mammalian sociality, we generated a reference transcriptome for the colonial tuco-tuco (Ctenomys sociabilis), a social species of subterranean rodent that is endemic to southwestern Argentina. Specifically, we analyzed over 500 million Illumina sequencing reads derived from the hippocampi of 10 colonial tuco-tucos housed in captivity under a variety of social conditions. The resulting reference transcriptome provides a critical tool for future studies aimed at exploring relationships between social environment and gene expression in this non-model species of social mammal.
Project description:Helminths are not usually considered important pathogens for birds of prey. There is a single published report of mortality in raptors due to an air sac trematode infection. We report a well-documented death case from massive infection by an air sac trematode of the family Cyclocoelidae in a wild-caught, juvenile male Snail Kite (Rostrhamus sociabilis) in Ecuador. The necropsy of a Snail Kite revealed more than 200 trematodes among air sacs, lungs, heart, gizzard, proventriculus, and liver. Within air sacs and lungs, mature flukes were associated with sacculitis, bronchitis, pneumonia, and atelectasis. Using an integrative taxonomic approach with morphological and molecular data, we identified the parasites as Bothrigaster variolaris (Trematoda: Cyclocoelidae: Ophthalmophaginae). This case provides the first evidence for the pathologic presence of air sac trematodes associated with morbidity in birds of prey in South America. Our results suggest that cyclocoelids may cause debilitation and significant clinical lesions in birds of prey, with potentially fatal consequences.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)
Project description:Trithorax group (TrxG) proteins counteract Polycomb silencing by an as yet uncharacterized mechanism. A well-known member of the TrxG is the histone methyltransferase Absent, Small, or Homeotic discs 1 (ASH1). In Drosophila ASH1 is needed for the maintenance of Hox gene expression throughout development, which is tightly coupled to preservation of cell identity. In order to understand the molecular function of ASH1 in this process, we performed affinity purification of tandem-tagged ASH1 followed by mass spectrometry (AP-MS) and identified FSH, another member of the TrxG as interaction partner. Here we provide genome-wide chromatin maps of both proteins based on ChIP-seq. Our Dataset comprises of 4 ChIP-seq samples using chromatin from S2 cells which was immunoprecipitated, using antibodies against Ash1, FSH-L and FSH-SL.