Project description:Pod dehiscence is an important agronomic trait. Pod dehiscence would cause huge yield losses before soybean maturity. Although some of soybean pod dehiscence associated genes have been identified, the underlying mechanism of pod dehiscence is still not comprehensively explained. In this study, we have identified differentially expressed genes (DEGs) between shattering-resistant and shattering-susceptible soybean accessions based on transcriptome analyses of 10 soybean accessions. Long non-coding RNAs (lncRNAs) that may be involved in soybean pod dehiscence were also identified, and we constructed co-expression networks between mRNAs and lncRNAs. RNA sequencing results were further verified by real-time PCR. Furthermore, DEGs were screened through analyzing positions of soybean pod dehiscence quantitative trait locus (QTLs) and phenotypes of soybean pod dehiscence for achieving pod-dehiscence candidate genes.
Project description:A major effort is underway to study the natural variation within the model plant species, Arabidopsis thaliana. Much of this effort is focused on genome resequencing, however the translation of genotype to phenotype will be largely effected through variations within the transcriptomes at the sequence and expression levels. To examine the cross-talk between natural variation in genomes and transcriptomes, we have examined the transcriptomes of three divergent A. thaliana accessions using tiling arrays. Combined with genome resequencing efforts, we were able to adjust the tiling array datasets to account for polymorphisms between the accessions and therefore gain a more accurate comparison of the transcriptomes. The corrected results for the transcriptomes allowed us to correlate higher gene polymorphism with greater variation in transcript level among the accessions. Our results demonstrate the utility of combining genomic data with tiling arrays to assay non-reference accession transcriptomes.