Project description:The peacock spider, Maratus volans, has one of the most elaborate courtship displays in arthropods. Using regular and high-speed video segments captured in the lab, we provide detailed descriptions of complete male courtship dances. As research on jumping spiders has demonstrated that males of some species produce vibrations concurrently with visual displays, we also used laser vibrometry to uncover such elements for this species. Our recordings reveal and describe for the first time, that M. volans males use vibratory signals in addition to complex body ornaments and motion displays. The peacock spider and other closely related species are outstanding study organisms for testing hypotheses about the evolution and functional significance of complex displays, thus, this descriptive study establishes a new model system for behavioral ecology, one that certainly stands to make important contributions to the field.
Project description:Northern (Glaucomys sabrinus) and southern (Glaucomys volans) flying squirrels are widespread species distributed across North America. Northern flying squirrels are common inhabitants of the boreal forest, also occurring in coniferous forest remnants farther south, whereas the southern flying squirrel range is centered in eastern temperate woodlands. These two flying squirrel species exhibit a hybrid zone across a latitudinal gradient in an area of recent secondary contact. Glaucomys hybrid offspring are viable and can successfully backcross with either parental species, however, the fitness implications of such events are currently unknown. Some populations of G. sabrinus are endangered, and thus, interspecific hybridization is a key conservation concern in flying squirrels. To provide a resource for future studies to evaluate hybridization and possible introgression, we sequenced and assembled a de novo long-read genome from a G. volans individual sampled in southern Ontario, Canada, while four short-read genomes (two G. sabrinus and two G. volans, all from Ontario) were resequenced on Illumina platforms. The final genome assembly consisted of approximately 2.40 Gb with a scaffold N50 of 455.26 Kb. Benchmarking Universal Single-Copy Orthologs reconstructed 3,742 (91.2%) complete mammalian genes and genome annotation using RNA-Seq identified the locations of 19,124 protein-coding genes. The four short-read individuals were aligned to our reference genome to investigate the demographic history of the two species. A principal component analysis clearly separated resequenced individuals, while inferring population size history using the Pairwise Sequentially Markovian Coalescent model noted an approximate species split 1 million years ago, and a single, possibly recently introgressed individual.
Project description:The identification and classification of species are essential for effective conservation management. This year, Australia experienced a bushfire season of unprecedented severity, resulting in widespread habitat loss and mortality. As a result, there has been an increased focus on understanding genetic diversity and structure across the range of individual species to protect resilience in the face of climate change. The greater glider (Petauroides volans) is a large, gliding eucalypt folivore. This nocturnal arboreal marsupial has a wide distribution across eastern Australia and is considered the sole extant member of the genus Petauroides. Differences in morphology have led to suggestions that the one accepted species is actually three. This would have substantial impacts on conservation management, particularly given a recent history of declining populations, coupled with extensive wildfires. Until now, genetic evidence to support multiple species has been lacking. For the first time, we used DArT sequencing on greater glider tissue samples from multiple regions and found evidence of three operational taxonomic units (OTUs) representing northern, central and southern groups. The three OTUs were also supported by our morphological data. These findings have important implications for greater glider management and highlight the role of genetics in helping to assess conservation status.