Project description:We isolated an efficient doxycycline degrading strain Chryseobacterium sp. WX1. To investigate gene expression patterns during doxycyclinedegradation by strain WX1, we conducted a comparative transcriptomic analysis using cultures of strain WX1 with and without doxycycline addition. The RNA-Seq data revealed that 90.44-96.56% of the reads mapped to the genome of Chryseobacterium sp. WX1 across all samples. Differentially expressed genes (DEGs) analysis (|log2FC| >2; p < 0.01) showed that 693 genes were significantly up-regulated and 592 genes were significantly down-regulated.
Project description:In this study, we isolated a potent doxycycline-degrading bacterium, Chryseobacterium sp. WX1, from environmental samples. To elucidate the molecular mechanisms underlying doxycycline degradation by strain WX1, we assessed and interpreted the proteomic profiles of Chryseobacterium sp. WX1 under conditions both with and without doxycycline exposure.
Project description:Some pathogen-derived effectors reprogram mRNA splicing in their host plant to regulate plant immune responses. The fungus Exserohilum turcicum is the causal agent of northern corn leaf blight, a damaging maize (Zea mays) disease. However, the low efficiency of genetic transformation of E. turcicum has hampered research on its effectors and whether E. turcicum effectors interfere with RNA splicing remained unknown. Here, using an alternative splicing (AS) reporter system, we identified the secreted protein EtEC81 (Exserohilum turcicum effector 81), which modulates the AS of maize pre-mRNAs and negatively regulates the pathogenicity of E. turcicum. EtEC81 physically interacts with EtEC81-interactiNG protein 1 (ZmEIP1), which associates with maize spliceosome components, regulating AS and positively regulating the defense response against E. turcicum. EtEC81 binding further enhanced the effect of ZmEIP1 on AS. Transcriptome analysis revealed 119 common genes with altered AS in maize plants transiently overexpressing ZmEIP1 or EtEC81, suggesting that these factors cause the mis-regulation of cellular activities and thus induce immune responses. We used RT-qPCR to verify representative AS events in the plants transiently overexpressing ZmEIP1 and EtEC81. Together, our results suggest that the EtEC81 effector targets ZmEIP1 to reprogram pre-mRNA splicing in maize.
Project description:Some pathogen-derived effectors reprogram mRNA splicing in their host plant to regulate plant immune responses. The fungus Exserohilum turcicum is the causal agent of northern corn leaf blight, a damaging maize (Zea mays) disease. However, the low efficiency of genetic transformation of E. turcicum has hampered research on its effectors and whether E. turcicum effectors interfere with RNA splicing remained unknown. Here, using an alternative splicing (AS) reporter system, we identified the secreted protein EtEC81 (Exserohilum turcicum effector 81), which modulates the AS of maize pre-mRNAs and negatively regulates the pathogenicity of E. turcicum. EtEC81 physically interacts with EtEC81-interactiNG protein 1 (ZmEIP1), which associates with maize spliceosome components, regulating AS and positively regulating the defense response against E. turcicum. EtEC81 binding further enhanced the effect of ZmEIP1 on AS. Transcriptome analysis revealed 119 common events with altered AS in maize plants transiently overexpressing ZmEIP1 or EtEC81, suggesting that these factors cause the mis-regulation of cellular activities and thus induce immune responses. We used RT-qPCR to verify representative AS events in the plants transiently overexpressing ZmEIP1 and EtEC81. Together, our results suggest that the EtEC81 effector targets ZmEIP1 to reprogram pre-mRNA splicing in maize.