Project description:We investigated the specific interactions of the most dominant bacterial CF-pathogen, Pseudomonas aeruginosa, and the anaerobic bacterium Veilllonella parvula, that has been recovered at comparable cell numbers in the respiratory tract of CF patients. We used our recently established in-vivo murine tumor model to investigate mutual influences of the two pathogens during a biofilm-associated infection process. We found that although P. aeruginosa and V. parvula colonized distinct niches within the tumor, in mice that were co-infected with both bacterial species significant higher cell numbers of P. aeruginosa were recovered from the tumor tissue. Concordantly, in vivo transcriptional profiling implied that the presence of V. parvula supports P. aeruginosa growth at the infected host site, and the higher P. aeruginosa load correlated with clinical deterioration.
Project description:We investigated the specific interactions of the most dominant bacterial CF-pathogen, Pseudomonas aeruginosa, and the anaerobic bacterium Veilllonella parvula, that has been recovered at comparable cell numbers in the respiratory tract of CF patients. We used our recently established in-vivo murine tumor model to investigate mutual influences of the two pathogens during a biofilm-associated infection process. We found that although P. aeruginosa and V. parvula colonized distinct niches within the tumor, in mice that were co-infected with both bacterial species significant higher cell numbers of P. aeruginosa were recovered from the tumor tissue. Concordantly, in vivo transcriptional profiling implied that the presence of V. parvula supports P. aeruginosa growth at the infected host site, and the higher P. aeruginosa load correlated with clinical deterioration. We cultivated P. aeruginosa PA14 and V. parvula DSM No.:2008 in mono- and co-cultures in vivo using an established murine tumor model. Corresponding in vitro samples were generated under anaerobe growth conditions.