Project description:We report the application of specific antibodies and high-throughput sequencing technologies (methylated RNA immunoprecipitation sequencing, MeRIP-seq) for high-throughput profiling of m6A modifications in breast cancer herceptin resistant cells. We generated maps of m6A modified transcripts in BT474 and BT474.TtzmR cells. We find that the m6A level was significantly increased in BT474.TtzmR cells compared to the BT474 cells. We show that there was a close correlation between the m6A modification and herceptin resistance.
Project description:The mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human acute myeloid leukemias (AML). To understand the role of YTHDF2 in AML, we generated m6A meRIP-seq libraries form Ythdf2fl/fl (Ythdf2CTL) pre-leukemic cells.
Project description:We report the application of specific antibodies and high-throughput sequencing technologies (methylated RNA immunoprecipitation sequencing, MeRIP-seq) for high-throughput profiling of m6A modifications in NSCLC cisplatin resistant cells. We generated maps of m6A modified transcripts in A549 and A549/DDP cells. We find that the m6A level was significantly increased in A549/DDP cells compared to the A549 cells. We show that there was a close correlation between the m6A modification and cisplatin resistance.
Project description:The mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human acute myeloid leukemias (AML). To understand the role of YTHDF2 in AML, we generated m6A meRIP-seq libraries form Ythdf2fl/fl; Vav-iCre (Ythdf2CKO) pre-leukemic cells.
Project description:Our study demonstrated that the expression of Igf2bp1 in activated microglia was significantly up-regulated, implying a role of Igf2bp1 in LPS-induced m6A modifications in microglia. To understand the roles of Igf2bp1 on LPS-induced m6A modification in microglia, we performed Igf2bp1 loss-of-function (LOF) approach. Microglia stimulated by LPS were transfected with either scrambled siRNA control or Igf2bp1 siRNA for 48 hours. To m6A modification profiles in control and Igf2bp1 LOF microglia were determined by MeRIP-seq analysis.
Project description:Cardiac fibrosis is common in cardiovascular diseases. N6-methyladenosine (m6A) is one of the most common modifications in eukaryotic mRNAs. Previous research has suggested that m6A modification is vital in cardiovascular diseases. The underlying targets of FTO were selected through transcriptome sequencing (RNA-seq) combined with methylated RNA immunoprecipitation sequencing (MeRIP-seq). According to MeRIP-seq and RNA-seq, FTO inhibited collagen synthesis in CFs.
Project description:Many transcriptional and epigenetic networks must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. Here, we explore the role of Zfp217 as a key transcriptional factor in maintaining ES cell self-renewal by performing meRIP analysis in control and Zfp217-depleted mouse stem cells. Examination of m6A levels from total RNA in control and Zfp217 shRNA infected mouse stem cells