Project description:We identified the changes in gene expression profile in hyaluronan-induced spheroids to elucidate the mechanisms of drug resistance of extramedullary disease in multiple myeloma.
Project description:To determine whether circRNAs are involved in multiple myeloma (MM), we analyzed the expression profile of circRNAs and mRNAs in MM.
Project description:The paper describes a model of multiple myeloma.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
A mathematical model of cell equilibrium and joint cell formation in multiple myeloma
M.A. Koenders, R. Saso
Journal of Theoretical Biology 390 (2016) 73–79
Abstract:
In Multiple Myeloma Bone Disease healthy bone remodelling is affected by tumour cells by means of paracrine cytokinetic signalling in such a way that osteoclast formation is enhanced and the growth of osteoblast cells inhibited. The participating cytokines are described in the literature. Osteoclast-induced myeloma cell growth is also reported. Based on existing mathematical models for healthy bone remo- delling a three-way equilibrium model is presented for osteoclasts, osteoblasts and myeloma cell populations to describe the progress of the illness in a scenario in which there is a secular increase in the cytokinetic interactive effectiveness of paracrine processes. The equilibrium state for the system is obtained. The paracrine interactive effectiveness is explored by parameter variation and the stable region in the parameter space is identified. Then recently-discovered joint myeloma–osteoclast cells are added to the model to describe the populations inside lytic lesions. It transpires that their presence expands the available parameter space for stable equilibrium, thus permitting a detrimental, larger population of osteoclasts and myeloma cells. A possible relapse mechanism for the illness is explored by letting joint cells dissociate. The mathematics then permits the evaluation of the evolution of the cell populations as a function of time during relapse.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Multiple myeloma is a relatively common B-cell malignancy that is currently incurable. Certain recurrent genetic abnormalities characteristics of different genetic subtypes have been described. Hyperdiploid myeloma characterized by recurrent trisomies is the most common genetic subtypes. However little is know about it's biology. Another common genetic abnormality is chromosome 13 deletion which is also associated with inferior prognosis. This abnormality is already present at the pre-malignant MGUS stage and is clonally selected with disease progression. Although it is biologically and clinically important the molecular consequence of chromosome 13 deletion is unknown. Experiment Overall Design: Hyperdiploid myeloma was identified using FISH. The gene expression profile of hyperdiploid MM is compared to that of non-hyperdiploid myeloma to identify differentially expressed genes. Molecular heterogeneity within H-MM is analyzed using unsupervised techniques. The distinctive subgroups identified are also tested in MGUS/SMM and NH-MM. The clinical relevance of these subtypes of hyperdiploid myeloma is then analyzed by correlating with relevant clinical information. Chromosome 13 deleted and undeleted MM are identified by FISH and their gene expression profile compared to identify molecular signature.
Project description:1) We identified the genes whose expression was up- and down-regulated by the adhesion to bone marrow stromal cells in human multiple myeloma cell line RPMI8226. 2) We identified the genes whose expression was up- and down-regulated by the PI3K inhibitor PF-04691502 in human multiple myeloma cell line RPMI8226. We isolated mRNA from the multiple myeloma cell line RPMI8226 under drug-resistant conditions, and subjected them to gene expression profiling using an Agilent GeneChip Array.
Project description:<p>The Multiple Myeloma Research Foundation (MMRF) CoMMpass (Relating <u>C</u>linical <u>O</u>utcomes in <u>MM</u> to <u>P</u>ersonal <u>Ass</u>essment of Genetic Profile) trial (NCT01454297) is a longitudinal observation study of 1000 newly diagnosed myeloma patients receiving various standard approved treatments that aim at collecting tissue samples, genetic information, Quality of Life (QoL) and various disease and clinical outcomes over 10 years.</p>