Project description:While ESBL and AmpC beta-lactamases barely degrade carbapenems, they are able to bind them and prevent them from interacting with penicillin binding proteins thereby preventing their effect. When these beta-lactamases are expressed at a high level and combined with a decreased influx of carbapenems due to a decrease in membrane permeability, Enterobacterales can become resistant to carbapenems. In this study we developed a LC-MS/MS assay for the detection of the E. coli porins OmpC and OmpF, it’s chromosomal AmpC beta-lactamase and the plasmid-mediated CMY-2 beta-lactamase. Subsequently, we cultured CMY-2 positive E. coli isolates in the presence of meropenem and analyzed mutants that showed increased resistance to meropenem using our developed assay and western blot. In all five selected strains, a decrease in OmpC and/or OmpF was the first event towards an increase in meropenem minimum inhibitory concentrations (MICs). Subsequently, in four of the five isolate series, MICs increased further after an increase in CMY-2-like production.
Project description:Background: Enterobacter cloacae complex (ECC) is a common opportunistic pathogen and is responsible for causing various infections in humans. Owing to its inducible chromosomal AmpC β-lactamase (AmpC), ECC is inherently resistant to the 1st- and 2nd- generation cephalosporins. However, whether β-lactams antibiotics enhance ECC resistance remains unclear. Results: In this study, we found that subinhibitory concentrations (SICs) of cefazolin (CFZ) and imipenem (IMP) can advance the expression of AmpC and enhance its resistance towards β-lactams through NagZ in Enterobacter cloacae (EC). Further, AmpC manifested a substantial upregulation in EC in response to SICs of CFZ and IMP. In nagZ knockout EC (ΔnagZ), the resistance to β-lactam antibiotics was rather weakened and the effect of CFZ and IMP on AmpC induction was completely abrogated. NagZ ectopic expression can rescue the induction effects of CFZ and IMP on AmpC and increase ΔnagZ resistance. More importantly, CFZ and IMP have the potential to induce the expression of AmpR's target genes in a NagZ-dependent manner. Conclusions: Our findings suggest that NagZ is a critical determinant for CFZ and IMP to promote AmpC expression and resistance and that CFZ and IMP should be used with caution since they may aggravate ECC resistance. At the same time, this study further improves our understanding of resistance mechanisms in ECC.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Background: Antimicrobial resistance is generally studied using a combination of growth inhibition measurements, sometimes in combination with DNA detection methods. However, the actual proteins that cause resistance such as enzymes, efflux pumps and a lack of porins cannot be detected by these methods. Improvements in liquid chromatography (LC) and mass spectrometry (MS) enabled easier and more comprehensive proteome analysis. In the current study, these three methods are combined into a multi-omics approach to analyze resistance against frequently used antibiotics within the beta-lactam, aminoglycoside and fluoroquinolone group in E. coli and K. pneumoniae. Objectives: We aimed to analyze which currently known antimicrobial resistance genes are detected at the protein level using liquid chromatography-mass spectrometry (LC-MS/MS) and to assess whether these could explain beta-lactam, aminoglycoside, and fluoroquinolone resistance in the studied isolates. Furthermore, we aimed to identify significant protein to resistance correlations which have not yet been described and to correlate the abundance of different porins to resistance. Methods: Whole genome sequencing, high-resolution LC-MS/MS and antimicrobial susceptibility testing by broth microdilution were performed for 187 clinical E. coli and K. pneumoniae isolates. Resistance genes and proteins were identified using the Comprehensive Antibiotic Resistance Database (CARD). All proteins were annotated using the NCBI RefSeq database and Prokka. Results & Conclusion: Proteins of small spectrum beta-lactamases, extended spectrum beta-lactamases, AmpC beta-lactamases, carbapenemases, and proteins of 16S ribosomal RNA methyltransferases and aminoglycoside acetyltransferases can be detected in E. coli and K. pneumoniae by LC-MS/MS. The detected mechanisms could explain phenotypic resistance in most of the studied isolates. Differences in the abundance and the primary structure of other proteins such as porins also correlated with resistance. LC-MS/MS is a different and complementary method which can be used to characterize antimicrobial resistance in detail as not only the primary resistance causing mechanisms are detected, but also secondary enhancing resistance mechanisms.
Project description:Background: Antimicrobial resistance is generally studied using a combination of growth inhibition measurements, sometimes in combination with DNA detection methods. However, the actual proteins that cause resistance such as enzymes, efflux pumps and a lack of porins cannot be detected by these methods. Improvements in liquid chromatography (LC) and mass spectrometry (MS) enabled easier and more comprehensive proteome analysis. In the current study, these three methods are combined into a multi-omics approach to analyze resistance against frequently used antibiotics within the beta-lactam, aminoglycoside and fluoroquinolone group in E. coli and K. pneumoniae. Objectives: We aimed to analyze which currently known antimicrobial resistance genes are detected at the protein level using liquid chromatography-mass spectrometry (LC-MS/MS) and to assess whether these could explain beta-lactam, aminoglycoside, and fluoroquinolone resistance in the studied isolates. Furthermore, we aimed to identify significant protein to resistance correlations which have not yet been described and to correlate the abundance of different porins to resistance. Methods: Whole genome sequencing, high-resolution LC-MS/MS and antimicrobial susceptibility testing by broth microdilution were performed for 187 clinical E. coli and K. pneumoniae isolates. Resistance genes and proteins were identified using the Comprehensive Antibiotic Resistance Database (CARD). All proteins were annotated using the NCBI RefSeq database and Prokka. Results & Conclusion: Proteins of small spectrum beta-lactamases, extended spectrum beta-lactamases, AmpC beta-lactamases, carbapenemases, and proteins of 16S ribosomal RNA methyltransferases and aminoglycoside acetyltransferases can be detected in E. coli and K. pneumoniae by LC-MS/MS. The detected mechanisms could explain phenotypic resistance in most of the studied isolates. Differences in the abundance and the primary structure of other proteins such as porins also correlated with resistance. LC-MS/MS is a different and complementary method which can be used to characterize antimicrobial resistance in detail as not only the primary resistance causing mechanisms are detected, but also secondary enhancing resistance mechanisms.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients. 12 samples were collected from two long-term polluted areas (Olkusz and Miasteczko M-EM-^ZlM-DM-^Eskie) in Southern Poland. In the study presented here, a consecutively operated, well-defined cohort of 50 NSCLC cases, followed up more than five years, was used to acquire expression profiles of a total of 8,644 unique genes, leading to the successful construction of supervised
Project description:New and rapid antimicrobial susceptibility/resistance testing methods are required for bacteria from positive blood cultures. In the current study we developed and evaluated a targeted LC-MS/MS assay for the detection of beta-lactam, aminoglycoside and fluoroquinolone resistance mechanisms in blood cultures positive for E. coli or K. pneumoniae. Selected targets were the beta-lactamases SHV, TEM, OXA-1-like, CTX-M-1-like, CMY-2-like, chromosomal E. coli AmpC, OXA-48-like, NDM, VIM and KPC, the aminoglycoside modifying enzymes AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6’)-Ib, ANT(2”)-I and APH(3’)-VI, the 16S-RMTases ArmA, RmtB, RmtC and RmtF, the quinolone resistance mechanisms QnrA, QnrB, AAC(6’)-Ib-cr, the wildtype QRDR of GyrA, and for E. coli, the porins OmpC and OmpF. The developed assay was evaluated using 100 prospectively collected positive blood cultures, 100 negative blood cultures inoculated with isolates that were previously collected from blood cultures, and 48 isolates inoculated with isolates carrying genes of less prevalent resistance mechanisms.
Project description:Heteroresistance in bacteria describes a subpopulational phenomenon of transient antibiotic resistance variation among cells of a generally susceptible population. Here, we investigated the molecular mechanisms and phenotypic characteristics underlying heteroresistance to ceftazidime (CAZ) in a clinical Enterobacter cloacae complex strain (ECC). We identified a plasmid-borne gene duplication-amplification (GDA) event of a region harboring an ampC gene encoding a β-lactamase blaDHA-1 as the key determinant of heteroresistance. Individual colonies exhibited variations in the copy number of the genes resulting in resistance level variation which correlated with growth onset (lag times) and growth rates in the presence of CAZ, analysed in linear models. GDA copy number heterogeneity occurred within single resistant colonies, demonstrating heterogeneity of GDA on the single-cell level. The interdependence between GDA, lag time and antibiotic treatment and the strong plasticity underlying heteroresistance underlines the high risk for misdetection of antimicrobial heteroresistance and subsequent treatment failure.