Project description:Today, swine is regarded as promising biomedical model, however, its gastrointestinal microbiome dynamics have been less investigated than that of humans or murine models . The aim of this study was to establish a high-throughput multi-omics pipeline to investigate the healthy fecal microbiome of swine and its temporal dynamics as basis for future infection studies. To this end, a homogenization protocol based on deep-frozen feces followed by integrated sample preparation for different meta-omics analyses was developed. Subsequent data integration linked microbiome composition with function, i.e. expressed proteins and secreted metabolites.
Project description:Mammalian feces can be collected non-invasively during field research and provides valuable information on the ecology and evolution of the host individuals. Undigested food objects, genome/metagenome, steroid hormones, and stable isotopes obtained from fecal samples provide evidence on diet, host/symbiont genetics, and physiological status of the individuals. However, proteins in mammalian feces have hardly been studied, which hampers the molecular investigations into the behavior and physiology of the host individuals. Here, we apply mass spectrometry-based proteomics to fecal samples (n = 10) that were collected from infant, juvenile, and adult captive Japanese macaques (Macaca fuscata) to describe the proteomes of the host, food, and intestinal microbes. The results show that fecal proteomics is a useful method to investigate dietary changes along with breastfeeding and weaning, to reveal the organ/tissue and taxonomy of dietary items, and to estimate physiological status inside intestinal tracts. These types of insights are difficult or impossible to obtain through other molecular approaches. Most mammalian species are facing extinction risk and there is an urgent need to obtain knowledge on their ecology and evolution for better conservation strategy. The fecal proteomics framework we present here is easily applicable to wild settings and other mammalian species, and provides direct evidence of their behavior and physiology.
Project description:In recent years, the roles of microRNAs playing in the regulation of influenza viruses replication caused researchers' much attenion. However, much work focused on the interactions between human, mice or chicken microRNAs with human or avian influenza viruses rather than the interactions of swine microRNAs and swine influenza viruses. To investigate the roles of swine microRNAs playing in the regulation of swine influenza A virus replication, the microRNA microarray was performed to identify which swine microRNAs were involved in swine H1N1/2009 influenza A virus infection.
Project description:We found that low protein diet consumption resulted in decrease in the percentage of normal Paneth cell population in wild type mice, indicating that low protein diet could negatively affect Paneth cell function. We performed fecal microbiota composition profiling. Male mice were used at 4-5 weeks of age. Fecal samples were collected for microbiome analysis.