Project description:Whole transcriptome sequencing of B. phytofirmans PsJN colonizing potato (Solanum tuberosum L.) plants was used to analyze in planta gene activity and in the response of strain PsJN to plant stress in three different time points. The transcriptome of PsJN colonizing in vitro potato plants showed a broad array of functionalities encoded on the genome of strain PsJN. Our study indicates that endophytic B. phytofirmans PsJN cells are active inside plants. Moreover, the activity of strain PsJN is affected by plant drought stress, it senses plant stress signals and adjusts its gene expression accordingly.
Project description:Plants coexist in close proximity with numerous microorganisms in their rhizosphere. With certain microorganisms, plants establish mutualistic relationships that can confer physiological benefits to the interacting organisms, including enhanced nutrient assimilation or increased stress tolerance. The root-colonizing endophytic fungi Penicillium chrysogenum, Penicillium minioluteum, and Serendipita indica have been reported to enhance the drought stress tolerance of plants. However, to date, the molecular mechanisms triggered by these fungi in plants remain unexplored. This study presents a comparative analysis of the effects on mock- and fungus-infected tomato plants (var. Moneymaker) under drought stress conditions (40% field capacity) and control conditions (100% field capacity). The findings provide evidence for the induction of common response modules by the fungi.
2024-10-18 | GSE279454 | GEO
Project description:Endophytic microorganisms from Cowpea
Project description:Sugarcane plantlets from a variety with high inputs of N obtained from BNF (genotype SP70-1143, CTC, Brazil) free of microorganisms were obtained by sterile meristem culture and micropropagation according to the method of Hendre et al. (1983). In vitro-grown SP70-1143 rooted sugarcane plantlets were inoculated as described by James et al. (1994) with 0.1 ml of 106–107 bacterial suspension. Controls were inoculated with medium only. Endophytic diazotrophic bacteria used were Gluconacetobacter diazotrophicus (PAL5 strain) or a mixture of Herbaspirillum seropedicae (HRC54 strain) and H. rubrisubalbicans (HCC103 strain). All plants were maintained at 30°C with an irradiance of 60 µmol photons m–2 s–1 for 12 h d–1. One day after the inoculation, plant tissues were examined for bacterial colonization by the Most Probable Number (MPN) estimation, according to the methods of Reis et al. (1994) and plantlets were collected and immediately frozen in liquid nitrogen. Five plantlets were polled for each treatment. Extraction of total RNA was performed separately on each sample pool. Keywords: comparison of associations with different endophytic bacterias