Project description:PPAR? promotes adipogenesis while Wnt proteins inhibit adipogenesis. However, the mechanisms that control expression of these positive and negative master regulators of adipogenesis remain incompletely understood. By genome-wide histone methylation profiling in preadipocytes, we find that among gene loci encoding adipogenesis regulators, histone methyltransferase (HMT) G9a-mediated repressive epigenetic mark H3K9me2 is enriched on the entire PPAR? locus. H3K9me2 and G9a levels decrease during adipogenesis, which correlates inversely with induction of PPAR?. Removal of H3K9me2 by G9a deletion enhances chromatin opening and binding of adipogenic transcription factor C/EBP-beta to PPAR? promoter, which promotes PPAR? expression. Interestingly, G9a represses PPAR? expression in an HMT activity-dependent manner but facilitates Wnt10a expression independent of its enzymatic activity. Consistently, deletion of G9a or inhibiting G9a HMT activity promotes adipogenesis. Finally, deletion of G9a in mouse adipose tissues increases adipogenic gene expression and tissue weight. Thus, by inhibiting PPAR? expression and facilitating Wnt10a expression, G9a represses adipogenesis. Examination of 3 different histone modification changes in 3T3-L1 preadipocytes
Project description:Obesity is often associated with a low-grade systemic inflammation state that contributes to the development of insulin resistance and atherosclerotic complications. This is usually coupled with increased macrophage infiltration in the adipose tissue and a defect in adipocyte differentiation that results in accumulation of hypertrophic fat cells characterized by a deregulated pattern of adipokine expression. Here we show that knockdown of histone demethylase lsd1 in 3T3-L1 preadipocytes results in defective adipogenesis and derepression of an inflammatory program in these cells. The dataset consists of four sample groups: [1] 3T3-L1 preadipocytes (passage 19) transfected with a control scrambled siRNA at 24h after transfection (siC.24h), [2] 3T3-L1 preadipocytes (p.19) transfected with a siRNA directed against LSD1 at 24h after transfection (siLsd1.24h), [3] 3T3-L1 preadipocytes (p.21) transfected with a control scrambled siRNA at 48h after transfection (siC.48h), and [4] 3T3-L1 preadipocytes (p.21) transfected with a siRNA directed against LSD1 at 48h after transfection (siLsd1.48h). The 24h sample groups (siC.24h and siLsd1.24h) consist of two biological replicate samples; the 48h sample groups (siC.48h and siLsd1.48h) consist of three biological replicate samples. Each sample was hybridized to a separate array, for a total of ten arrays.
Project description:We attempted to analyze the effect of PRMT1 knockdown in adipogenesis.3T3-L1 preadipocytes were used to investigate aipogenesis in vitro. Analysis of the transcriptomics from siNC and siPRMT1 3T3-L1 cells at MDI induction for 24 h and 72 h provides new insight into the collective roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation.
Project description:DNA methylation plays a crucial role in the regulation of gene transcription. In this study, using MeDIP-seq experiment, we report the mapping of DNA methylation in undifferentiated 3T3-L1 cells (preadipocytes). Examination of DNA methylation pattern in undifferentiated 3T3-L1 cells (preadipocytes)
Project description:To identify the genes that are regulated by IRF7, we have performed DNA microarray in 3T3-L1 adipocytes differentiated from precursor cells infected with retrovirus empty or carrying IRF7. Plasmids (Empty- and IRF7-pMSCV) were kindly provided from Dr. Eguchi at the Okayama University Graduate School of Medicine, Okayama, Japan [Cell Metab. 2008;7: 86-94.]. Infected 3T3-L1 preadipocytes were selected by puromycin treatment and differentiated into adipocytes. 7 days after the induction of adipogenesis, total RNA was isolated.
Project description:Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1 which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPβ binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis. We used microarrays to detail the global programme of gene expression in 3T3-L1 preadipocytes and 10Th1lf mesenchymal stem cells and identified up-regulated genes upon knockdown of SETDB1, MBD1, and MCAF1. SETDB1, MBD1, or MCAF1 was knocked-down in 3T3-L1 preadipocytes and 10Thalf mesenchymal stem cells for RNA extraction and hybridization on Affymetrix microarrays. Small interfering RNAs (siRNA) targeting to Setdb1, Mbd1, or Mcaf1 was transfected to 3T3-L1 preadipocytes or 10Thalf mesenchymal stem cells.
Project description:We analyzed RING1B binding regions in 3T3-L1 cell lines transduced with the retroviral vector for V5-tagged Fbxl10 or its dF-box mutant. RING1B ChIP-seq in empty, Fbxl10-1, and dF-box mutant vector transduced 3T3-L1 preadipocytes, in duplicate, and V5-Fbxl10 ChIP-seq in Fbxl10 overexpressing 3T3-L1 cells
Project description:The differentiation of preadipocytes into adipocytes is controlled by several transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are known as master regulators of adipogenesis. BCL11B is a zinc finger-type transcription factor that regulates the development of the skin and central nervous and immune systems. Here, we found that BCL11B was expressed in the white adipose tissue (WAT), particularly the subcutaneous WAT and that BCL11B−/− mice had a reduced amount of subcutaneous WAT. During adipogenesis, BCL11B expression transiently increased in 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). The ability for adipogenesis was reduced in BCL11B knockdown 3T3-L1 cells and BCL11B−/− MEFs, whereas the ability for osteoblastogenesis was unaffected in BCL11B−/− MEFs. Luciferase reporter gene assays revealed that BCL11B stimulated C/EBPβ activity. Furthermore, the expression of downstream genes of the Wnt/β-catenin signaling pathway was not suppressed in BCL11B−/− MEFs during adipogenesis. Thus, this study identifies BCL11B as a novel regulator of adipogenesis, which works, at least in part, by stimulating C/EBPβ activity and suppressing the Wnt/β-catenin signaling pathway.
Project description:To investigate miRNAs that implicate the process of adipogenesis by interacting with canonical Wnt/β-catenin signaling pathway, we constructed two cell models at first, and then investigated the expression profile of microRNAs by using Microarray. Based on the data of high throughput microarray, we identified 18 miRNAs which might promote adipogenesis by repressing WNT signaling, including mir-210, mir-148a, mir-194, mir-322 etc. On the other hand, we also identified 29 miRNAs which might repress adipogenesis by activation of WNT signaling, including mir-344, mir-27, and mir-181. The target genes involved in WNT signaling pathway of these identified miRNAs were also predicted through online tools. Two cell models of 3T3-L1, i.e. activation and suppression of WNT signaling including four samples, i.e. preadipocytes, mature adipocytes (MDI induction), Lithium treated preadipocytes, MDI induction of Lithium treated preadipocytes. Each sample was replicated in triplicate.
Project description:The differentiation of preadipocytes into adipocytes is controlled by several transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are known as master regulators of adipogenesis. BCL11B is a zinc finger-type transcription factor that regulates the development of the skin and central nervous and immune systems. Here, we found that BCL11B was expressed in the white adipose tissue (WAT), particularly the subcutaneous WAT and that BCL11Bâ/â mice had a reduced amount of subcutaneous WAT. During adipogenesis, BCL11B expression transiently increased in 3T3-L1 preadipocytes and mouse embryonic fibroblasts (MEFs). The ability for adipogenesis was reduced in BCL11B knockdown 3T3-L1 cells and BCL11Bâ/â MEFs, whereas the ability for osteoblastogenesis was unaffected in BCL11Bâ/â MEFs. Luciferase reporter gene assays revealed that BCL11B stimulated C/EBPβ activity. Furthermore, the expression of downstream genes of the Wnt/β-catenin signaling pathway was not suppressed in BCL11Bâ/â MEFs during adipogenesis. Thus, this study identifies BCL11B as a novel regulator of adipogenesis, which works, at least in part, by stimulating C/EBPβ activity and suppressing the Wnt/β-catenin signaling pathway. MEFs were derived from embryonic day 12.5 BCL11B+/+ and BCL11Bâ/â C57BL6 mice embryos. After 2 times passage, MEFs were differentiated using the adipocyte differentiation medium and 10 μM pioglitazone. After 12 h of adipocyte differentiation, gene expression profiles were analyzed by DNA microarray.