Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:The aim of this experiment was to determine if the development of resistance to antibiotics can be driven by the concentration and speciation of Cu. Experimental setup was designed to investigate two hypotheses for which two strains of Gram- bacteria have been selected: - Do TE enhance AR in resistant bacteria? Resistant strain: Bioluminescent Pseudomonas aeruginosa PAO1 (Xen41, Tetracycline resistant) - Do TE induce AR in sensitive bacteria? Sensitive strain: Pseudomonas aeruginosa PAO1 (Wild Type)
Project description:This study addresses the impact of zinc limitation on the opportunistic human pathogen, Pseudomonas aeruginosa. Zinc limitation was assessed in the P. aeruginosa PAO1 strain using an isogenic deletion mutant lacking the periplasmic, zinc solute-binding protein, znuA (PA5498). ZnuA delivers bound zinc to its cognate ABC transporter, ZnuBC, for import into the cytoplasm. Our transcriptional analyses revealed P. aeruginosa to possess a multitude of zinc acquisition mechanisms, each of which were highly up-regulated in the zinc-deficient znuA mutant strain. P. aeruginosa also utilized zinc-independent paralogues of zinc-dependent genes to maintain cellular function under zinc limitation. Together, these data reveal the complex transcriptional response and versatility of P. aeruginosa to zinc depletion.
Project description:Analysis of a SigX knockout mutant of Pseudomonas aeruginosa H103 strain in minimal medium with glucose as carbon source (M9G). SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF in Pseudomonas aeruginosa. Deletion of the ECF sigma factor sigX gene provide insights into the SigX role in several virulence and biofilm- related phenotypes in Pseudomonas aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.