Project description:Gene order, or microsynteny, is generally thought not to be conserved across metazoan phyla. Only a handful of exceptions, typically of tandemly duplicated genes such as Hox genes, have been discovered. Here, we performed a systematic survey for microsynteny conservation in 17 genomes and identified nearly 600 pairs of unrelated genes that have remained together across over 600 million years of evolution. Using multiple genome-wide resources, including several genomic features, epigenetic marks, sequence conservation and microarray expression data, we provide extensive evidence that many of these ancient microsyntenic arrangements have been conserved in order to preserve either (i) the coordinated transcription of neighboring genes, or (ii) Genomic Regulatory Blocks (GRBs), in which transcriptional enhancers controlling key developmental genes are contained within nearby “bystander” genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos to further investigate putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results show that ancient genomic associations are far more common in modern metazoans than previously thought – likely involving over 12% of the ancestral bilaterian genome – and that cis-regulatory constraints have played a major role in conserving the architecture of metazoan genomes. ChIP-seq H3K27me3 of 24hpf zebrafish embryos
Project description:Gene order, or microsynteny, is generally thought not to be conserved across metazoan phyla. Only a handful of exceptions, typically of tandemly duplicated genes such as Hox genes, have been discovered. Here, we performed a systematic survey for microsynteny conservation in 17 genomes and identified nearly 600 pairs of unrelated genes that have remained together across over 600 million years of evolution. Using multiple genome-wide resources, including several genomic features, epigenetic marks, sequence conservation and microarray expression data, we provide extensive evidence that many of these ancient microsyntenic arrangements have been conserved in order to preserve either (i) the coordinated transcription of neighboring genes, or (ii) Genomic Regulatory Blocks (GRBs), in which transcriptional enhancers controlling key developmental genes are contained within nearby “bystander” genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos to further investigate putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results show that ancient genomic associations are far more common in modern metazoans than previously thought – likely involving over 12% of the ancestral bilaterian genome – and that cis-regulatory constraints have played a major role in conserving the architecture of metazoan genomes.
Project description:In response of the germplasm resources conservation in China, the characters of a superior land-race of broad bean (Vicia faba L.) Cixidabaican (CX) were identified compared with Lixiyicun (LX) introduced from Japan.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Solanum licopersicum tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study.