Project description:In order to investigate the underlying mechanism, we determined to profile the transcriptional status of CAR19TIF cells and sgZcsh12a CAR T cells derived from spleens of recipient mice at Day-10 post cell transfer and CAR19TIF cells and endogenous CD8 T cells derived from spleens of recipient mice at 3-month post cell transfer.
Project description:In order to investigate the population heterogeneity of CAR19TIF, we determined to profile the single cell RNA transcriptional status of CAR19TIF cells derived from spleens of recipient mice at 2-month post cell transfer. Furthermore, we determined to examine potential subsets among the CAR19TIF cells and critical gene expression levels.
Project description:Chimeric antigen receptor (CAR) T-cells have not induced meaningful clinical responses in solid tumor indications. Loss of T-cell stemness, poor expansion capacity and exhaustion during prolonged tumor antigen exposure are major causes of CAR T-cell therapeutic resistance. scRNA-sequencing analysis of CAR T-cells from a first-in-human trial in metastatic prostate cancer identified two distinct and independently validated cell states associated with antitumor potency or lack of efficacy. Low levels of the PRDM1 gene encoding the BLIMP1 transcription factor defined highly potent TCF7+CD8+ CAR T-cells, while enrichment of TIM3+CD8+ T-cells with elevated PRDM1 expression predicted poor outcome. PRDM1 single knockout promoted TCF7-dependent CAR T-cell stemness and proliferation resulting in marginally enhanced leukemia control. However, in the setting of PRDM1 deficiency, a negative epigenetic feedback program of NFAT-driven T-cell dysfunction characterized by compensatory upregulation of NR4A3 and multiple other genes encoding exhaustion-related transcription factors hampered effector function in solid tumors. PRDM1 and NR4A3 combined ablation skewed CAR T-cell phenotypes away from TIM3+CD8+ and toward TCF7+CD8+ to counter exhaustion of tumor-infiltrating CAR T-cells and improve in vivo antitumor responses, effects that were not achieved with BLIMP1 or NR4A3 single disruption alone. These data reveal a novel molecular targeting strategy to enrich stem-like CAR T-cells resistant to exhaustion and underscore dual inhibition of PRDM1/NR4A3 expression or activity as a promising approach to advance adoptive cell immuno-oncotherapy.
Project description:Chimeric antigen receptor (CAR) T-cells have not induced meaningful clinical responses in solid tumor indications. Loss of T-cell stemness, poor expansion capacity and exhaustion during prolonged tumor antigen exposure are major causes of CAR T-cell therapeutic resistance. scRNA-sequencing analysis of CAR T-cells from a first-in-human trial in metastatic prostate cancer identified two distinct and independently validated cell states associated with antitumor potency or lack of efficacy. Low levels of the PRDM1 gene encoding the BLIMP1 transcription factor defined highly potent TCF7+CD8+ CAR T-cells, while enrichment of TIM3+CD8+ T-cells with elevated PRDM1 expression predicted poor outcome. PRDM1 single knockout promoted TCF7-dependent CAR T-cell stemness and proliferation resulting in marginally enhanced leukemia control. However, in the setting of PRDM1 deficiency, a negative epigenetic feedback program of NFAT-driven T-cell dysfunction characterized by compensatory upregulation of NR4A3 and multiple other genes encoding exhaustion-related transcription factors hampered effector function in solid tumors. PRDM1 and NR4A3 combined ablation skewed CAR T-cell phenotypes away from TIM3+CD8+ and toward TCF7+CD8+ to counter exhaustion of tumor-infiltrating CAR T-cells and improve in vivo antitumor responses, effects that were not achieved with BLIMP1 or NR4A3 single disruption alone. These data reveal a novel molecular targeting strategy to enrich stem-like CAR T-cells resistant to exhaustion and underscore dual inhibition of PRDM1/NR4A3 expression or activity as a promising approach to advance adoptive cell immuno-oncotherapy.
Project description:Differentiated cells can be reprogrammed to an embryonic-like state by transfer of their nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about the factors that induce this reprogramming. Here we show that the combination of four factors, Oct3/4, Sox2, c-Myc, and Klf4, can generate pluripotent-like stem cells directly from mouse embryonic or adult fibroblast cultures. Unexpectedly, Nanog was dispensable in this process. These cells, which we designated iPS (induced pluriopotent-like stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent-like cells can be directly generated from fibroblast cultures by the addition of only a few defined factors. Keywords: cell type comparison