Project description:Nitrogen (N) emissions became a huge topic under environmental and nutrient concerns in dairy farming. Nitrogen is metabolized in cows as a consequence of feed crude protein digestion which is either recycled or excreted via urine, faeces and/or milk. In dairy cows differences between cows in N-recycling and N-emissions have been postulated. This study investigated 24 Holstein dairy cows in late lactation. The experimental design comprises two dietary groups (low (LP) vs normal (NP) crude protein) and two groups of milk urea content, high (HMU) vs low (LMU). Transcriptomic profiles of the liver, rumen, mammalian gland and kidney tissues were comparatively assessed by mRNA sequencing.
Project description:M. Berg, J. Plöntzke, S. Leonhard-Marek, K.E. Müller & S. Röblitz. A dynamic model to simulate potassium balance in dairy cows. Journal of Dairy Science 100, 12 (2017).
High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.
Project description:Negative energy balance (NEB) is an altered metabolic state in high yielding cows that occurs during the first few weeks postpartum when energy demands for lactation and maintenance exceed the energy supply from dietary intake. NEB can, in turn, lead to metabolic disorders and to reduced fertility. Alterations in the expression of more than 700 hepatic genes have previously been reported in a study of NEB in postpartum dairy cows. miRNAs (microRNA) are known to mediate many alterations in gene expression post transcriptionally. To study the hepatic miRNA content of postpartum dairy cows, including their overall abundance and differential expression, in mild NEB (MNEB) and severe NEB (SNEB) short read RNA sequencing was carried out.
Project description:We performed single-cell RNA-sequencing on the rumen epithelium of dairy cows to construct an epithelial single-cell map of the rumen.
2021-10-21 | GSE175652 | GEO
Project description:Endometrial microbiota in dairy cows
| PRJNA942289 | ENA
Project description:Fecal microbiota of dairy cows
Project description:The current situation of rising demand for animal products and sustainable resource usage, improving nutrient utilization efficiency in dairy cows is an important task. Understanding the biology of feed efficiency in dairy cows enables for the development of markers that may be used to identify and choose the best animals for animal production. Thus in this study, ten Holstein cows were evaluated for feed efficiency and adipose tissue samples from five high efficient and five low efficient dairy cows were collected for protein extraction, digestion and data were analyzed for differential abundant proteins enriched in feed efficiency pathways. Among the identified peptides, we found 110 DAPs and two protein networks significantly related to feed efficiency. Among the relative mRNA expression of genes involved in energy metabolism including transcription/translation (STAT2, DDX39A and RBM39) or protein transport (ITGAV), only RBM39 showed significant decrease in high efficient dairy cows. The findings presented here confirmed the Transferrin upregulated in pathways including acute phase response signaling, LXR/RXR activation, FXR/RXR activation of high efficient dairy cows supporting that these pathways are related to feed efficiency in dairy cows.