Project description:Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. A near universal feature of centromeres is the presence of repetitive sequences, such as satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. Previously, we identified a novel composite retrotransposon, LAVA, that is exclusive to gibbons and expanded within the centromere regions of one gibbon genus, Hoolock. In this study, we use ChIP-seq, RNA-seq and fluorescence in situ hybridization to comprehensively investigate the repeat content of centromeres of the four extant gibbon genera (Hoolock, Hylobates, Nomascus and Siamang). We find that CENP-A nucleosomes and the DNA-protein interface with the inner kinetochore are enriched in retroelements in all gibbon genera, rather than satellite DNA. We find that LAVA in Hoolock is enriched in the centromeres of most chromosomes and shows centromere- and species-specific sequence and structural differences compared to other genera, potentially as a result of its co-option to a centromeric function. In contrast, we found that a centromeric retroelement-derived macrosatellite, SST1, corresponds with chromosome breakpoint reuse across gibbons and shows high sequence conservation across genera. Finally, using de novo assembly of centromere-specific sequences, we determine that transcripts originating from gibbon centromeres recapitulate species-specific TE diversity. Combined, our data reveals dynamic, species-specific shifts in repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity observed within this lineage.
Project description:Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. A near universal feature of centromeres is the presence of repetitive sequences, such as satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. Previously, we identified a novel composite retrotransposon, LAVA, that is exclusive to gibbons and expanded within the centromere regions of one gibbon genus, Hoolock. In this study, we use ChIP-seq, RNA-seq and fluorescence in situ hybridization to comprehensively investigate the repeat content of centromeres of the four extant gibbon genera (Hoolock, Hylobates, Nomascus and Siamang). We find that CENP-A nucleosomes and the DNA-protein interface with the inner kinetochore are enriched in retroelements in all gibbon genera, rather than satellite DNA. We find that LAVA in Hoolock is enriched in the centromeres of most chromosomes and shows centromere- and species-specific sequence and structural differences compared to other genera, potentially as a result of its co-option to a centromeric function. In contrast, we found that a centromeric retroelement-derived macrosatellite, SST1, corresponds with chromosome breakpoint reuse across gibbons and shows high sequence conservation across genera. Finally, using de novo assembly of centromere-specific sequences, we determine that transcripts originating from gibbon centromeres recapitulate species-specific TE diversity. Combined, our data reveals dynamic, species-specific shifts in repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity observed within this lineage.
Project description:Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH and selective sequencing in two of the four karyomorphs, has shown that high resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n=50), and Hoolock (2n=38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human-gibbon synteny breakpoints revealed association with transposable elements and segmental duplications providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning event presented here will facilitate genome sequence assembly for these close relatives of humans.
Project description:BackgroundThe microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as "microbiota", play an essential role in digestion and are important in regulating the immune response. Whereas the intestinal microbiota in humans and model organisms has been studied for many years, much less is known about the microbiota populating the intestinal tract of wild animals.ResultsThe relatively large number of raptors admitted to the Tufts Wildlife Clinic on the Cummings School of Veterinary Medicine at Tufts University campus provided a unique opportunity to investigate the bacterial microbiota in these birds. Opportunistic collection of fecal samples from raptors of 7 different species in the orders Strigiformes, Accipitriformes, and Falconiformes with different medical histories generated a collection of 46 microbiota samples. Based on 16S amplicon sequencing of fecal DNA, large β-diversity values were observed. Many comparisons exceeded weighted UniFrac distances of 0.9. Microbiota diversity did not segregate with the taxonomy of the host; no significant difference between microbiota from Strigiformes and from Accipitriformes/Falconiformes were observed. In contrast, in a sample of 22 birds admitted for rehabilitation, a significant effect of captivity was found. The change in microbiota profile was driven by an expansion of the proportion of Actinobacteria. Based on a small number of raptors treated with anti-microbials, no significant effect of these treatments on microbiota α-diversity was observed.ConclusionsThe concept of "meta-organism conservation", i.e., conservation efforts focused on the host and its intestinal microbiome has recently been proposed. The observed effect of captivity on the fecal microbiota is relevant to understanding the response of wildlife to captivity and optimizing wildlife rehabilitation and conservation efforts.
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response. The cecum, left lobe of the liver, and spleen were isolated from mice for microarray processing with three or more replicates for six expermental conditions: non-treated control, SAHC POD1, SAHC.AC POD2, SAHC.FMT POD2, SAHC.AC POD7, SAHC.FMT POD7
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response.