Project description:Oligodendrogliomas are defined by IDH-mutations and codeletions of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 23 IDH-mutant oligosarcomas forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 11 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dens network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA, and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas than for grade 3 oligodendrogliomas and comparable to that of grade 4 IDH-mutant astrocytomas. These results establish oligosarcoma as a distinct type of IDH-mutant glioma differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. Diagnosis can be based on the characteristic DNA methylation profile or the combined evidence of sarcomatous histology, IDH-mutation and an oligodendroglioma-typical molecular alteration as TERT promoter mutation and/or 1p/19q codeletion.
Project description:Oligodendrogliomas are defined by IDH-mutations and codeletions of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 23 IDH-mutant oligosarcomas forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 11 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dens network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA, and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas than for grade 3 oligodendrogliomas and comparable to that of grade 4 IDH-mutant astrocytomas. These results establish oligosarcoma as a distinct type of IDH-mutant glioma differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. Diagnosis can be based on the characteristic DNA methylation profile or the combined evidence of sarcomatous histology, IDH-mutation and an oligodendroglioma-typical molecular alteration as TERT promoter mutation and/or 1p/19q codeletion.
Project description:Oligodendrogliomas are defined by IDH-mutations and codeletions of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 23 IDH-mutant oligosarcomas forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 11 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dens network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA, and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas than for grade 3 oligodendrogliomas and comparable to that of grade 4 IDH-mutant astrocytomas. These results establish oligosarcoma as a distinct type of IDH-mutant glioma differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. Diagnosis can be based on the characteristic DNA methylation profile or the combined evidence of sarcomatous histology, IDH-mutation and an oligodendroglioma-typical molecular alteration as TERT promoter mutation and/or 1p/19q codeletion.
Project description:Adult-type diffuse gliomas comprise IDH-mutant astrocytomas, IDH-mutant 1p/19q codeleted oligodendrogliomas (ODG), and IDH-wildtype glioblastomas (GBM). GBM display genome instability, which may result from two genetic events leading to massive chromosome alterations: chromothripsis (CT) and whole-genome duplication (WGD). The better prognosis of the latter may be related to their genome stability compared to GBM. Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening.
Project description:Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.