Project description:Plant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.
Project description:Plant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves. Arabidopsis plants were grown in either ambient (370 ppm) or elevated (750 ppm) CO2. Leaf number 10 was harvested when it was a primordia, expanding, or mature in each of the CO2 treatments.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2]
| PRJNA243410 | ENA
Project description:Effects of permafrost thaw on seasonal soil CO2 efflux dynamics in a boreal forest site
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in EarthM-bM-^@M-^Ys biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling. Fifty four samples were collected from three soil types (Phaeozem,Cambisol,Acrisol) in three sites (Hailun, Fengqiu and Yingtan) along a latitude with reciprocal transplant; Both with and without maize cropping in each site; Three replicates in every treatments.
Project description:We used RNA-Seq to query the Chlamydomonas reinhardtii transcriptome for regulation by CO2 concentration and by the transcription regulator CIA5(CCM1). Both CO2 concentration and CIA5 are known to play roles in induction of an essential CO2-concentrating mechanism (CCM), but the degree of interaction and the extent of global regulation beyond the CCM were not previously understood. We compared the transcriptome of a wild type strain vs. a cia5 strain under 3 CO2 supply conditions: high CO2 (H-CO2; 5%); low CO2 (L-CO2; 0.03 to 0.05%); and very-low CO2 (VL-CO2; <0.02%). Our goals were to: 1) reveal candidate genes that, through changes in their expression, distinguish multiple acclimation states induced by H-CO2, L-CO2, and VL-CO2; 2) reveal genes regulated directly or indirectly by CIA5; and 3) reveal genes responding to the interaction between CIA5 and changes in CO2 concentration. Our results revealed a small group of genes as encoding putative Ci transporters based on their expression patterns. The results also showed a massive and much broader impact on global gene regulation by CIA5/CCM1, which directly or indirectly affected 15% of the Chlamydomonas genome. The transcriptomes under L-CO2 and VL-CO2 conditions were not significantly different, suggesting that these two acclimation states must be controlled by mechanisms operating beyond transcript abundance.
Project description:Enterohemorrhagic Escherichia coli (EHEC), including serotype O157:H7, cause severe food-borne illness. On route to the human colon, they encounter and resist, numerous anti-microbial ingestion stresses. We hypothesize that these stresses cue EHEC to alter virulence properties. This study investigated the impact of bile salts on virulence properties and examined the genetic basis of the phenotypes. Established assays were used to examine adhesion to human epithelial cells, motility, verotoxin (VT) production and antimicrobial resistance with/without bile salt stress. Bacteria treated for 90 minute in DMEM plus 0.15% (w/v) bile salt mix demonstrated significantly enhanced adhesion to epithelial cells and resistance to several antibiotics but did not increase motility or VT production. To determine the genetic basis of these phenotypes a microarray experiment was conducted. EHEC strain 86-24, in mid-log phase of growth, were grown in DMEM pH 7.4 (control), or DMEM plus bile salt mix (0.15% w/v), for 90 minutes, statically at 37˚C, 5% CO2 prior to harvesting RNA for the microarray study. Four biological replicates were produced for each treatment. Microarray and gene expression analysis (semi-quantitative RT-PCR and beta-galactosidase reporter assays) of bile salt-treated EHEC revealed significant up-regulation of genes for lipid A modification, fimbriae, an efflux pump, and a two-component regulatory system relative to the bacteria grown in DMEM alone. This work points to several mechanisms that EHEC employs to resist the stresses of the human small intestine, notably efflux, antimicrobial resistance, and outer membrane alterations. Bile salts enhanced the virulence-related properties of increased adhesion and resistance to antimicrobials but not VT production or motility. This research contributes to our understanding of how EHEC senses and responds to host environmental signals and the mechanisms this pathogen uses to successfully colonize and infect the human host. Bacteria were grown in LB broth overnight with shaking, then subcultured into DMEM and grown statically at 37˚C, 5%CO2 to mid-log phase. Bacteria were then subjected to one of two 90 minute treatments: 1) Control: DMEM pH 7.4, or 2) Bile Salt Stress: DMEM pH 7.4 plus 0.15%, grown statically at 37˚C, 5%CO2.
Project description:Insufflation of the colon, usually with room air, is necessary to distend the lumen for exploration. Carbon dioxide (CO2) insufflation instead of room air insufflation (AI) has been shown to decrease symptoms of abdominal pain or discomfort during the procedure and particularly during the following 24 hours. CO2 is is rapidly absorbed by the intestinal mucosa and exhaled through respiration. AI colonoscopy has usually been the reference standard to compare colonoscopy using CO2 insufflation. In two recent articles AI was compared to either CO2 insufflation and Water-aided colonoscopy (WAC), which entails infusion of water to facilitate insertion to the cecum.
WAC can be categorized broadly in Water Immersion (WI) and Water Exchange (WE). In WI water is infused during the insertion phase of colonoscopy, with removal of infused water predominantly during withdrawal. Occasional use of insufflation may be allowed. WE entails complete exclusion of insufflation, removal of residual colonic air pockets and feces, and suction of infused water predominantly during insertion to minimize distention. During the withdrawal phase insufflation is used to distend the colonic lumen.
In the WAC arms of the two mentioned articles the insertion method used was WI, with infusion of water at room temperature or at 37°C. During withdrawal, air insufflation or either air or CO2 insufflation were employed.
Compared to AI, CO2 insufflation and WI (using room air insufflation or CO2 insufflation during withdrawal) were effective in both studies in decreasing sedation requirement, pain and tolerance scores, with patients’ higher willingness to repeat the procedure.
Until now no direct comparison has been made within a single study about pain score during colonoscopy using AI, CO2 insufflation, WI/CO2, WE/CO2, WI/AI and WE/AI.
In this study we test the hypothesis that, compared to AI, CO2 insufflation and WAC/CO2-AI methods will decrease pain score during colonoscopy, with reduction of sedation requirement, and that WE will achieve the best result. This comparative study has also the aim to test the respective peculiarities of each method.