Project description:The study describes differential expression of genes in adult female flies (Canton S) kept for three weeks in reproductive diapause, compared to ones kept in normal conditions. It discusses signal pathways that are activated or inactivated during diapause and how this relates to the general diapause phenotype with arrested vitellogenesis, extended lifespan, decreased somatic senescence, increased stress resistance and reallocated energy resources.
Project description:Adult reproductive diapause is a powerful overwintering strategy for many continental insect species including bumblebees, which enables queens to survive several months through harsh winter conditions and then build new beehives in the following spring. There are few reports regarding the molecular regulatory mechanism of reproductive diapause in Bombus terrestris, which is an important pollinators of wild plants and crops, and our previous researches identified the conditions for reproductive diapause of year-round mass rearing. Here, we performed combined RNA sequencing transcriptomics and quantitative proteomic analyses in different development phases relate to reproductive diapause. According to the overall analysis, we found these differentially expressed proteins/genes act in the citrate cycle, insect hormone biosynthesis, insulin and mTOR signalling pathway. To get better sense of the reproductive diapause regulated mechanism, some genes regulated JH synthesis, insulin/ TOR signal pathway were detected, the BtRheb, BtTOR, BtVg and BtJHAMT had lower expression levels in diapause queens, and the JH III titers levels and some metabolic enzymes activities were significantly up-regulated in found post-diapause queens. After microinjected insulin-like peptides (ILPs) and JH analog (JHA), some indicators shows the significantly changes of hormones, cold tolerance substances, metabolic enzymes and reproduction. Along with other related researches, a reproductive diapause regulated model during B. terrestris year-round mass rearing process was establishment. This study contribute to a comprehensive view and the molecular regulate mechanism of productive diapause in eusocial insect.
Project description:The most common ladybird beetle, Coccinella septempunctata L., is an excellent predator of crop pests such as aphids and white flies, and it shows a wide range of adaptability, a large appetite and a high reproductive ability. In this study, we collected female adults in three different states, i.e., non-diapause, diapause and diapause termination, for transcriptome sequencing. The experimental insects consisted of three different states as follows: Non-diapause female insects were reared at 24±1°C, with a RH of 70±10% and a 16:8 h light: dark (L: D) photoperiod and collected after their first oviposition. Female adults in diapause were reared at 18±1°C at an RH of 70±10% and a 10:14-h (L:D) photoperiod. The experimental diapause insects were collected after 30 days. Diapause-terminated adults were transferred to another climatic cabinet with the 30-day diapause insects and reared under the same conditions as the non-diapause insects. After their first oviposition, the female insects were collected and stored at -80°C. Three biological replicates per treatment (non-diapause, diapause, diapause-terminated) were sequenced using Illumina HiSeq 2500.
Project description:Young Drosophila females respond to low temperature and short photoperiod by developmental arrest of the ovaries. This form of reproductive diapause is a winter adaptation. Here we used Affymetrix microarrays to study global expression in female heads associated with diapause.
Project description:The most common ladybird beetle, Coccinella septempunctata L., is an excellent predator of crop pests such as aphids and white flies, and it shows a wide range of adaptability, a large appetite and a high reproductive ability. In this study, we collected female adults in three different states, i.e., non-diapause, diapause and diapause termination, for transcriptome sequencing.