Project description:Transcriptional profiling of sweet corn response to plant density (crowding stress). Determine the extent to which hybrid and environment influences crowding stress response and identify crowding stress transcriptional response in sweet corn
Project description:Transcriptional profiling of sweet corn plant density (crowding stress) tolerance influencing yield. Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The experiment was conducted to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network.
Project description:Transcriptional profiling of sweet corn plant density (crowding stress) tolerance influencing yield. Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The experiment was conducted to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. 3 high-and 3 low-yielding hybrids with 2-3 biological replications grown under high population density (crowding stress)
Project description:Stalk borers are major pests for some of the most important crops in the world, such as maize or rice. Plant defense mechanisms against these herbivores have been poorly investigated. The maize´s stalk responds to insect feeding activating defense genes including hormone biosynthetic-related or proteinase inhibitor transcripts. The most outstanding conclusion is that cells in the maize´s stalk undergo cell wall fortification after corn borer tunneling. We performed a gene expression profiling to identify those genes differentially expressed in maize after infestation with the corn borer S. nonagrioides.
Project description:Stalk borers are major pests for some of the most important crops in the world, such as maize or rice. Plant defense mechanisms against these herbivores have been poorly investigated. The maize´s stalk responds to insect feeding activating defense genes including hormone biosynthetic-related or proteinase inhibitor transcripts. The most outstanding conclusion is that cells in the maize´s stalk undergo cell wall fortification after corn borer tunneling. We performed a gene expression profiling to identify those genes differentially expressed in maize after infestation with the corn borer S. nonagrioides. Four genetically unrelated maize inbred lines (EP39, EP42, CM151 and PB130) were infested at VT (tasseling) developmental stage with a mass of approximately 40 eggs of S. nonagrioides laid on the sheath of the main ear. Another four biological replicates per genotype were used as control. Samples for RNA extraction were harvested fifteen days after infestation.