Project description:In the presented study, in order to unravel gut microbial community multiplicity and the influence of maternal milk nutrients (i.e., IgA) on gut mucosal microbiota onset and shaping, a mouse GM (MGM) was used as newborn study model to discuss genetic background and feeding modulation on gut microbiota in term of symbiosis, dysbiosis and rebiosis maintenance during early gut microbiota onset and programming after birth. Particularly, a bottom-up shotgun metaproteomic approach, combined with a computational pipeline, has been compred with a culturomics analysis of mouse gut microbiota, obtained by MALDI-TOF mass spectrometry (MS).
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:The mouse stool samples were collected from different diets fed mice and bacterial cells were harvest for metaproteomic analysis for understanding the role ofdiet on gut microbiota.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:We compared gene expression in the small intestine (ileum) of mice that were either (i) germ-free, (ii) colonized with a conventional mouse cecal microbiota, (iii) colonized with a conventional zebrafish gut microbiota, or (iv) colonized with Pseudomonas aeruginosa PAO1. Experiment Overall Design: Adult germ-free NMRI mice were colonized with either (i) a conventional mouse cecal microbiota harvested from adult Swiss-Webster mice (5 biological replicates), (ii) a conventional zebrafish intestinal microbiota harvested from adult C32 zebrafish (3 biological replicates), or (iii) a culture of Pseudomonas aeruginosa PAO1 (5 biological replicates). 14 days after colonization, total RNA was prepared from the ileum of each animal, with total RNA prepared from adult germ-free NMRI mouse ileum serving as negative controls (5 biological replicates). RNA was used as template to generate cRNA for hybridization to Affymetrix 430 v2 Mouse GeneChips.
Project description:We compared gene expression in the small intestine (ileum) of mice that were either (i) germ-free, (ii) colonized with a conventional mouse cecal microbiota, (iii) colonized with a conventional zebrafish gut microbiota, or (iv) colonized with Pseudomonas aeruginosa PAO1. Keywords: response to microbial colonization
Project description:We used 16S V3/V4 region amplification to evaluate the composition of bacteria species in mouse fecal pellets. Fecel pellets were collected from young-adult (12 weeks old) wild type C57Bl/6 mice and aged (72 weeks old) wild type C57Bl/6 mice after 21 days of vehicle or antibiotics treatment (to induce gut microbiota depletion). In one sequencing round, we sequenced a total of 12 different fecal samples (3 young control, 3 aged control, 3 young depleted gut microbiota (ABX) and 3 aged depleted gut microbiota (ABX)). Amplicons were indexed using the Nextera XT Index Kit and pooled into a library for Illumina sequencing.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.