Project description:In order to elucidate molecular mechanisms of noise-induced hearing loss in the cochlea (inner ear), transcriptome of the cochlear sample was analyzed after induction of hearing loss by exposure to intense noise in mice. Cochlear transcriptome was analyzed at 3 hours following the noise exposure.
Project description:In order to elucidate molecular mechanisms of noise-induced hearing loss and dexamethasone therapy in the cochlea (inner ear), transcriptome of cochlear samples was analyzed after induction of hearing loss by exposure to intense noise in mice. Dexamethasone was intraperitoneally injected immediately following the noise trauma. Cochlear transcriptome was analyzed at 12h and 24h following the noise trauma and dexamethasone administration.
Project description:Noise-induced hidden hearing loss (HHL) is a new type of hearing loss that has been identified in recent years and leads to insidious damage to the cochlea, unlike the well-known noise-induced hearing loss (NIHL). However, the cellular and molecular basis for it remains to be elucidated. Here, we established a single-cell transcriptome profile of the C57BL/6J mouse cochlea, in which we describe the transcriptome changes of individual cell types within the cochlea with HHL and NIHL. Mice in the HHL group were exposed to 110 dB of noise for 2 hours, and those in the NIHL group were exposed to 115 dB of noise for 4 hours for 3 days. The cochlea was taken 6 hours after the last noise exposure. The control group was not exposed to noise, with other conditions being the same as those in the noise-exposed group. The results of sequencing at the single-cell level help us gain a deeper understanding of the mechanisms of the development of HHL and NIHL.