Project description:We developed microsatellite markers for Fimbristylis sericea, a coastal herb found in sand dunes in Asia and Australia. • Twelve microsatellite loci were isolated, and the genetic variability within and among local populations was characterized. The number of alleles per locus was two to five with a mean of 3.5, total expected heterozygosity per locus was 0.069-0.645 with a mean of 0.336, and average expected heterozygosity within a population per locus was 0.051-0.230. Most of the loci deviated significantly from Hardy-Weinberg equilibrium. • All 12 microsatellite loci were polymorphic within and among populations. These loci could be useful genetic markers for population genetic studies of F. sericea populations.
| S-EPMC4103114 | biostudies-literature
Project description:Neolitsea sericea chloroplast NGS low data
Project description:Solutions for ecological and economic problems posed by Hakea sericea invasions rely on scientific knowledge. We conducted a systematic review to analyze and synthesize the past and current scientific knowledge concerning H. sericea invasion processes and mechanisms, as well as monitoring and control techniques. We used ISI Web of Science, Scopus, and CAPES Periodicals to look for publications on the ecological and environmental factors involved in H. sericea establishment (question 1); responses of H. sericea to fire in native and invaded ecosystems (question 2); and H. sericea monitoring and control methods (question 3). We identified 207 publications, 47.4% of which related to question 1, mainly from Australia and South Africa, with an increasing trend in the number of publications on monitoring and modeling. The traits identified in our systematic review, such as adaptations to dystrophic environments, drought resistance, sclerophylly, low transpiration rates, high nutrient use efficiency, stomatal conductance and photosynthetic rates, strong serotiny, proteoid roots and high post-fire seed survival and seedling recruitment, highlighted that H. sericea is a successful invader species due to its long adaptive history mediated by an arsenal of ecophysiological mechanisms that place it at a superior competitive level, especially in fire-prone ecosystems. Integrated cost-effective control methods in selected areas and the incorporation of information on the temporal invasion dynamics can significantly improve invasion control and mitigate H. sericea impacts while maintaining the supply of ecosystem services in invaded areas.
Project description:In the study, ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry analysis of Leucosidea sericea leaf and stem extracts led to the identification of various classes of compounds. Further chromatographic purifications resulted in the isolation of 22 compounds that consisted of a new triterpenoid named leucosidic acid A (1), an acetophenone derivative 2, a phloroglucinol derivative 3, three chromones 4-6, seven pentacyclic triterpenoids 7-13, a phytosterol glucoside 14, a flavonoid 15, and seven flavonoid glycosides 16-22. Nineteen of these compounds including the previously undescribed triterpenoid 1 are isolated for the first time from L. sericea. The structures of the isolated compounds were assigned based on their high-resolution mass spectrometry and nuclear magnetic resonance data. Some of the isolated triterpenoids were evaluated for inhibitory activity against α-amylase, α-glucosidase, and pancreatic lipase. Of the tested compounds, 1-hydroxy-2-oxopomolic acid (7) and pomolic acid (13) showed higher potency on α-glucosidase than acarbose, which is used as a positive control in this study. The two compounds inhibited α-glucosidase with IC50 values of 192.1 ± 13.81 and 85.5 ± 6.87 μM, respectively.