Project description:To investigate the role of lncRNAs in postharvest senescence of Sparassis latifolia, We stored the fruiting bodies of S. latifolia at 4 ℃ for 0, 8, 16 and 24 days with OPP film packaging after harvest and profiled the lncRNA and mRNA transcriptome. We then performed gene expression profiling analysis using data obtained from RNA-seq of fruiting body at 4 time points.
2024-01-17 | GSE226806 | GEO
Project description:Development, characterization and validation of Novel SSR markers in Dalbergia latifolia.
Project description:Background Curculigo latifolia is a perennial plant endogenous to Southeast Asia whose fruits contain the taste-modifying protein neoculin, which binds to sweet receptors and makes sour fruits taste sweet. Although similar to snowdrop (Galanthus nivalis) agglutinin (GNA), which contains mannose-binding sites in its sequence and 3D structure, neoculin lacks such sites and has no lectin activity. Whether the fruits of C. latifolia and other Curculigo plants contain neoculin and/or GNA family members was unclear. Results Through de novo RNA-seq assembly of the fruits of C. latifolia and the related C. capitulata and detailed analysis of the expression patterns of neoculin and neoculin-like genes in both species, we assembled 85,697 transcripts from C. latifolia and 76,775 from C. capitulata using Trinity and annotated them using public databases. We identified 70,371 unigenes in C. latifolia and 63,704 in C. capitulata. In total, 38.6% of unigenes from C. latifolia and 42.6% from C. capitulata shared high similarity between the two species. We identified ten neoculin-related transcripts in C. latifolia and 15 in C. capitulata, encoding both the basic and acidic subunits of neoculin in both plants. We aligned these 25 transcripts and generated a phylogenetic tree. Many orthologs in the two species shared high similarity, despite the low number of common genes, suggesting that these genes likely existed before the two species diverged. The relative expression levels of these genes differed considerably between the two species: the transcripts per million (TPM) values of neoculin genes were 60 times higher in C. latifolia than in C. capitulata, whereas those of GNA family members were 15,000 times lower in C. latifolia than in C. capitulata. Conclusions The genetic diversity of neoculin-related genes strongly suggests that neoculin genes underwent duplication during evolution. The marked differences in their expression profiles between C. latifolia and C. capitulata may be due to mutations in regions involved in transcriptional regulation. Comprehensive analysis of the genes expressed in the fruits of these two Curculigo species helped elucidate the origin of neoculin at the molecular level.
Project description:Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 MYA and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of a S. latifolia inbred line to detect sex-linked SNPs and identified more than 1700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes. 2 Samples (male and female) in triplicates