Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:Here, we presented an atlas of region resolved proteome and lipidome of mouse eye. The multiphoton microscopy-guided laser microdissection combined with in depth label-free proteomics, enable us to identify 13,536 proteins in 11 regions of mouse eye. Further integrative analysis of label-free proteome and imaging mass spectrometry (IMS), visually revealed the distinctive molecular features, including proteins, lipids, and glycans of various anatomical mouse eye regions. This work presented the panoramic eye proteome map, and served as the rich resource for eye researches in the future.
Project description:To study epigenetic changes in mouse bladder urothelial cells with different infection histories, urothelial stem cells (USCs) isolated from C3H/HeN mice with different infection histories (Adult Naive, Resolved, and Sensitized) were used to perform WGBS , ATAC, and CUT&RUN for comparison.